 Unit III – Structures, Pointerts & Files

Structures

Structure Definition

Initialising, assigning values

Passing of structures as arguments

Unions

Pointers

Declaring and Initialising of Pointers

Pointer based expressions

Arrays

Strings

Functions

Structures

C Program Examples

File management in C

Opening & closing

I/O operations on files

 Pointers

Introduction

One of the sophisticated / important features of C language.

One of the difficult features to follow.

Powerful tool and flexible to use.

Enables to

effectively represent complex data structures,

change values passed as arguments to functions,

work with memory that has been allocated dynamically,

and efficiently deal with arrays.

Uses

Provides an indirect means of accessing the value of a particular data item.

Enables to access available that is defined outside the function.

More efficient in handling multi-dimensional arrays.

Increase the execution speed.

Use of a pointer array to character strings results in saving of data storage space in memory.

Understanding POINTERS

Consider the declaration

int count = 10;

and assure that the variable is store in memory address 6005.

Representation

6005

count

address

value
variable name

During execution, the variable count is always associated with the memory address 6005.

The value of integer variable count is 10.

The address of variable count is 6005.

Pointers are variables that hold memory addresses.

Definition

Pointer is a variable, which contains the address of another variable

Assume that the address of count is stored in variable ‘ptr’.

Relationship between the variables ‘ptr’ and ‘count’

Variable
Value

Address

Count

6005

 ptr

5005

The variable ptr ‘points to’ variable count.

The value of ptr variable is the address of the variable count (6005).

The address of ptr variable is 5005.

Accessing the address of a variable

The operator and immediately preceding a variable returns the address of the variable associated with it.

ptr = &count;

assigns the ‘address of’ variable count to the pointer variable ptr.

The & operator can be used only with a single variable or an array element.

Example

&x[0]
Address of 0th (first) element of x.

&x[i]
Address of ith element of x.

Invalid uses of Address (&) operator

&1250

pointing at constant

int x[50];

&x

pointing at array name

&(x + y)

pointing at expressions

Program to print the address of variables

main() {

char a;

int b;

float c;

a = ‘z’;

b = 100;

c = 12.25;

printf (“%c is stored at %u \n”, a, &a);

printf (“%d is stored at %u \n”, b, &b);

printf (“%f is stored at %u \n”, c, &c);

}

Memory addresses are unsigned integers of integer variable.

Declaring and initialising pointers

Pointer contains the address of other variables and should be declared of that type.

General form of pointer declaration

date–type ptr–name;

Examples

int &ptr;

integer pointer

Contains the address of integer variable.

char *char-ptr;
character pointer

Contains the address of character variable.

float *float-ptr;
floating pointer.

Contains the address of float variable.

Pointers should be used only after initialisation.

INITIALISATION

ptr = & count;
//ptr points to count

Pointer variables always point to the corresponding type of data.

Cannot assign absolute address to a pointer variable.

int *ptr;

ptr = 8765;

Invalid

A pointer variable can be initialised in its declaration itself.

int x, *ptr = &x;

ptr is initialised to the address of x.

int * ptr = &x, x;

Invalid as x is not declared first.

Accessing a variable through its pointer

The value of pointer variable is accessed by indirection operator (also called value at address).

Example

int sum, &ptr, n;

sum = 100;

ptr = ∑ //address of variable sum

n = *ptr; //value at address stored in ptr i.e., value of sum

ptr =∑

n = *ptr;

equivalent to

n = *∑

also equivalent to

n = sum;

Examples

1. Program to assign a character variable to the pointer and display the contents.

main() {

char x, y;

char &ptr;

x = ‘c’;

ptr = &x;

y = *ptr;

printf (“Value of x = %c \n”, x);

printf (“Value of pointer = %c \n”, y);

}

 x

 y

ptr

Declarations

Address

 2100
 2106
 2050

x = ’c’

ptr = &x

y = *ptr

2. Program to display the contents and the address of a pointer variable.

main (){

int x;

int &ptr;

x = 10;

ptr = &x;

printf (“Value of x = %d \n”, x);

printf (“Contents of ptr = %d \n”, &ptr);

printf (“Address of ptr = %d \n”, ptr);

}

 x

 ptr

Declarations

 2100
 2150

 Address

x=10

ptr = &x

3. Program to assign the pointer variable to another pointer and display the contents of both variables.

main(){

int x;

int &ptr1; *ptr2;

x = 10;

ptr1 = &x;

ptr2 = ptr1;

printf (“Value of x = %d \n”, x);

printf (“Contents of ptr1 = %d \n”, &ptr1);

printf (“Contents of ptr2 = %d \n”, *ptr2);

}

x

 ptr1

ptr2

Declarations

Address

 2100
 2125

2150

x=10

ptr1= &x

ptr2 = ptr1

Pointer Expressions

Pointer variables can be used in expressions.

Example

int sum, x, y, a, b, *ptr1 = &a, *ptr2 = &b;

a = 10; b = 5; sum = 100; Address 5100 5200

y = *ptr1 * *ptr2;
 a b sum ptr1 ptr2 y

sum = sum + *ptr1;
 10 5 100 5100 5200 50

*ptr2 = *ptr2 + 10;

15

allows to

add integers to pointers. Ex. ptr1 + 4

subtract integers from pointers. Ex. ptr2 - 2

subtract one pointer from another. Ex. ptr2 – ptr1

If ptr1 and ptr2 are both pointers to the same array, then ptr2–ptr1 gives the number of elements between ptr1 and ptr2.

Short-hand operators can be used with the pointers.

Ex. ptr1++;

– – ptr2;

sum += *ptr2;

Pointers can also be compared using the relational operators.

Ex. ptr1 > ptr2

ptr1 == ptr2

ptr1 = ptr2

Pointers can not be used in division or multiplication.

Ex.
ptr1 / ptr2

Invalid

ptr1 * ptr2

Invalid

ptr1 / 3

Invalid

Two pointers can not be added.

Ex. ptr1 + ptr2

Invalid

Program to illustrate the use of pointers in Arithmetic operations.

main(){

int a, b, *ptr1, *ptr2, x, y;

a =12; b = 4;

ptr1 = &a; ptr2 = &b;

x = *ptr1 * *ptr2 – 6;

printf (“a = %d”, b= %d”, a, b);

printf (“x = %d \n”, x);

*ptr2 * *ptr2
+ 3;

*ptr1 * *ptr2
– 5;

y = *ptr1 * *ptr2 – 6;

printf (“a= %d”, b=%d, y=%d, \n”, a, b, y);

}

Address 6100 6050
5400 2500
 4130
3025

 a b
 ptr1 ptr2 x
 y

 12
4
6100 6050
 42

a = 12
b = 4
x = 42

 2

7

 8

a = 2
b = 7
y = 8

Pointer increments and scale factor

The expression ptr1++;

ptr1
points to the next value of its type.

When a pointer is incremented, its value is increased by the length of the data type that it points to (called Scale factor)

Data type

length in bytes

char

1

int

2

float

4

long int

4

double

8

STRUCTURES

Basically a structure is tool for grouping elements together.

Using a structure we can represent a collection of date items probably of different types using a single name.

Example
struct date
{

int month;

int day;

int year;

};

It contains three integer members called month, day and year.
The definition of date in a sense defines a new type in the language in that variables may subsequently be declared to be of struct date, as

struct date today;

We can also declare a list of variables of struct date type separated by commas.

struct date today, purchase-date, tom-date;

We can also represent the fields of the structure of different types like.

struct book-info{

char title [20];

char author [15];

int pages;

float price;

}

The keyword struct declares a structure to hold the details of four fields namely title, author, pages and price.
These fields are called structure elements or members. Each member may belong to a different type of data.
Book-info is the structure and is called the structure tag.

It is this tag name that is used to declare variables that have the tag’s structure.

The general form of a structure is:

struct structure-name{

data-type member1;

data-type member2;

};

struct book-info{

char title[20];

char author[15];

int pages;

float price;

} a, b, c;

The use of tag-name is optional.

struct {

xxx

} a, b, c;
declares a, b, c as structure variables representing three books, but does not include a tag-name for later use in declarations.

If the structure definition is outside & before then its scope becomes global and is accessible by other functions as well.

Accessing Members of the structure
Specifying the variable name followed by a period, and then the member name accesses a member of a structure.

The members themselves are not variables; they should be linked to the structure variables in order to make them meaningful members.
For instance title has no meaning. The member operator establishes this link.

Example:
book1.title, is the variable representing the title of book 1, and is treated like any other variable:

We can assign values to the member of variables through two ways: one using the assignment statement like

book1.pages = 100;

book1.price = 180.5;

strcpy (book1.title, “programming in C”);

strcpy (book1.author, “Ritchie”);

The other way of assigning values to member variables is by reading values into them through scanf () function like

scanf (“%s”, book1.title);

scanf (“%d”, book1.pages);

are valid input statements.

We can even test the value of price to see if it is greater than 500 as

if (book1.price > 500)

 discount =1.5;

Simple example to read and print structure variable:

struct date{

int month;

int day;

int year;

};

main (){

struct date todays-date;

printf (“Enter values”);

scanf(“%d %d %d”, &todays-date.month,
&todays-date.day, &todays-date.year);

printf(“%d %d”, todays-date.month,
todays-date.day, todays-date.year);

}

Structure Initialization

We can initialize the structure variable, like any other variable by using the static keyword.
However the ANSI standard permits initialization of structure variables with auto storage class.

Example:

main(){

static struct{

int day;

int month;

int year;

} today ={5, 5, 98};

};

would initialize today.day = 5, today.month = 5 and today.year = 98.

Another way is

main (){

struct date{

int day;

int month;

int year;

};

static struct date.today={5, 5, 98}

static struct date.tomorrow{6, 5, 98};

}
Still another way is

struct date{

int day, month, year;

};

main () {

static struct date.today = {5, 5, 98};

}

Comparison of structure variables

Two variables of the same structure can be compared the same way as ordinary variables.
If date1 and date2 are the variables of the same structure then the following operations are valid:

date1= date2;
Assignment of date2 to date1.

date1 == date2;

Compare all members of date1 with date2.

date1 != date2;

Return 1 if all the members are not equal, & otherwise.

Some compilers do not support these operations. In such cases individual member need to be compared.

Arrays within structures
We can include arrays as structure members. We have seen arrays of characters inside a structure. On similar lines we can use single or multidimensional arrays of type int, float etc as members of the structure.

Example:

struct course{

char course_code[10];

int subject [5];

};

Here the member subject contains 5 elements subject[0] - subject[4].
These elements can be accessed using appropriate subscripts.
For example,

struct course c1;

c1.subject [1];
refers to the subject 1 of course C1.

Arrays of structures

We use structures to describe the format of a number of related variables.
For example to keep the information about the employees of a firm, we may use a template to describe employee name, employee code, employee department, employee salary, employee age, and then declare all the employees as structure variables.
In such cases, we may declare an array of structures, each element of the array representing a structure variable.

For example

struct employee emp[100];

defines an array called emp, that consists of 100 elements, each element is defined to be of the type struct employee.

Consider the declaration:
struct employee{

char name [15];

char code [10];

char dept [10];

float salary;

int age;

};

main (){

static struct emp[3] = {
{“John”, ”abc10”, ”CSE”, 1000, 25}

{“Kelly”, ”cde20”, ”ECE”, 2000, 30}

{“Sand”, ”fgh30”, ”CIVIL”, 3000, 40}
};

}
This declares the emp as an array of three elements emp[0], emp[1], emp[2] and initializes their members as follows :

emp[0].name = ”John”

emp[0].code = ”abc10”

emp[0].dept = ”CSE”

emp[0].salary = 1000

emp[0].age = 25

We use the usual array-accessing methods to access individual elements and then the member operator to access members.

Example:

On the usage of array of structures:

main() {

struct book{

char name[20];

float price;

int pages;

};

struct book b[100];

int i;

for (i=0; i < 9; ++i){

printf(“Enter name, price and pages\n”);

scanf(“%s %f %d”, &b[i].name, &b[i].price,

&b[i].pages);

}

for (i = 0; i < = 9; i ++)

printf (“%s %f %d \n”, b[i].name, b[i].price,
b[i].pages);

}

Nested Structures (Structures within structures)
One structure can be nested within another structure.
Using this facility complex data types can be created. In other words a structure variable can be member or field of another structure.

Consider the following declaration:

struct address{

char city [15];

char state [10];

char street [10];

int pin;

};

struct employee{

char name [20];

int age;

int phone;

struct address adr;

};

or the second structure could also be written as

struct employee{

char name [20];

int age;

int phone;

struct{

char city [15];

char state [10];

char street [10];

int pin;

} address;

};

The employee structure contains a member called address which itself is a structure with three members.
The members of the inner structure namely city, state, street and pin can be referred to as

employee.address.state

employee.address.city

employee.address.street

employee.address.pin

An inner structure can have more than one variable. The following form is valid:

struct abc{

{

int x, y;

float z;

} a, b;

} xyz[3];

The inner structure has two variables ‘a’ and ‘b’ which implies that both of them have the same structure template.
A base member can be accessed as follows:

xyz[0].a.x;

xyz[0].b.x;

We can also use tag names to inner structures.
We can have more than one nested structures.

Example:

struct date-time-venue{

struct date today;

struct time now;

char *venue;

};

where date is a structure having the form:

struct date{

int day, month, year;
}

& time is

struct time{

int hours, minutes, seconds;

}

We can declare members of date-time-venue as

struct date-time-venue x;

then using structure variable x, we can access, the base members of date and time as

x.today.day, x.today.month, x.today.year.

&
x.now.hours, x.now.minutes, x.now.seconds.

Structures and Functions:

Passing structures to a function:

Like ordinary variables, pointers and arrays, structure variables can also be passed to functions.

Basically there are three methods of passing the values of a structure from one function to another.

The first method is to pass each member of the structure as an actual argument of the function call. The actual arguments are then treated independently like ordinary variables. This is the most inefficient method and becomes unmanageable when the structure size is large.
The second method involves passing of a copy of the entire structure to the called function. Since the function is working on a copy of the structure, any changes to structure members within the function are not reflected in the original structure i.e., parameter passing is by call by value.

The third and most efficient approach is to use pointers, i.e., use the pointer to a structure as an argument i.e., the address location of the structure is passed to the called function. The function can access indirectly the entire structure and work on it. This is similar to passing of arrays to functions.

First let us see passing of structure using the second method.
The function is called using the following form:

function-name (structure variable-name);

The called function takes the following form;

Return -type function-name (name)

struct
struct-name name;

{

return(expr);

}

The called function must be declared for its type, appropriate to the data type it is expected to return.

The structure variable used as the actual argument and the corresponding formed argument in the called function must be of the same struct type.

When a function returns a structure, it must be assigned to a structure of identical type in the calling function.

Example:A function accepting a structure variable as an argument and also returning a structure.

struct time{

int hours, minutes, seconds;

};

main (){

struct time time_update(struct time);

struct time cur_time, next_time;

printf(“Enter the time(hh:mm:ss):\n”;

scanf(“%d %d %d”, &cur_time.hour,

&cur_time.minutes, &cur_time.seconds);

next-time = time_update(cur_time);

printf(“The updated time is %d %d %d \n”,
next_time.hour, next_time.minutes,

next_time.seconds);

}

struct time time-update(struct time new_time){

struct time new_time;

new_time = new;

++new_time.seconds;

if (new_time.seconds > = 60){

new_time.seconds = 0;

new_time.minutes ++;

if (new_time.minutes > = 60){

new_time.hour++;

if (new_time.hour > = 24)

new_time.hour = 0;

}

}

return(new_time)

}

Notice that the function time-update & prototype is first declared in the main program. It shows that, the function time-update returns the structure of type time and also expects structure variable of type time as its argument.

Next we read the current time and pass it as an argument to the function time-update to update the current time. Inside the function, we appropriately update the time by assigning the passed in argument to new-time and then returning the structure variable new-time which is assigned to next-time variable in the main program.

Readers should note that, the functions can return structures also as the data types. In the previous lessons we have seen function returning basic data types like integer, float, char, double etc. A function can similarly return pointer to basic data types like function can return pointer to integer, or character or float etc. However a function cannot return an array as such it can return an element of an array. But we have seen first now that a can return a structure and at the same time, we have seen that, we can pass structure variable as an argument to a function.

Pointers and structures

The way we can have a pointer to an int, or a pointer pointing to a char, similarly we can have a pointer pointing to a struct. Such pointers are known as ‘struct pointers’.
main(){

struct book{

char name [20];

char author [20];

int pages;

int accno;

};

struct book b1={“C programming”, “KRK”,
200, 201};

struct book *bookptr;

bookptr =&b1;

printf(“%s %s %d %d”, b1.name, b1.author,
b1.pages, b1.accno);

printf(“%s %s %d %d”, bookptr(name,

bookptr(author, bookptr(pages,
bookptr(accno);

When we declare a pointer to a structure & initialize it with a structure variable, then we cannot use bookptr.name to access the members of the structure to which it is pointing to i.e., member operator ‘.’ cannot be used with pointer to structure variables.
We have to use the notation:

(*bookptr).name, to access the member name through the pointer to a structure i.e., here bookptr.

‘C’ provides another shorthand notation or symbol called arrow operator ‘(’ (made up of minus sign followed by greater than sign).
Using arrow operator we can write the same as

bookptr(name, bookptr(pages etc.

Note: The operators ‘(’, ‘.’and () and [] have highest precedence among the operators. They bind very tightly with their operands.

Example
Consider the structure given below:

struct numbers{

int a;

float *b;

};

Let us declare a pointer to the structure numbers as

struct numbers *ptr;

Then the statement ++ptr(a; increments ‘a’ and not ptr because (has higher priority over ++.

But if we write it as (++ptr)(a;
then it increments ptr first and then links it to ‘a’.

Similarly the statement ptr++(a;
is also valid and it increments ptr after accessing ‘a’.

Remember: When we increment the pointer to a structure variable like ptr++ then it will point to the next structure variable in the case of array of pointers.

*ptr(b;

fetches whatever ‘b’ points to (i.e., ‘b’ is also a pointer)

*ptr(p++;

increments ‘p’ after accessing whatever it points to.

(*ptr(p)++;

increments whatever ‘p’ points to.

*ptr++(p;

increments ptr after accessing whatever ‘p’ points to.

Consider the program given below which has a function display which accepts a pointer to a structure as its argument.

struct book{

char name [20];

char author [20];

int pages;

};

main(){

struct book b1={“Microprocessors”, ”KRK”, 500};

display(&b1);

}

display(b)

struct book *b;

{
printf(“%s %s %d”, b(name, b(author,
b(pages);

}

Let us see how a function can return a pointer to a structure consider the following program segment:

struct abc{

int a;

float b;

char c;

};

main(){

struct abc xyz = {10, 20.5, ‘C’};

struct abc *pqr;

struct abc *modify(struct abc *);

pqr = modify(&xyz);

printf(“Modified values are”);

printf(“%d %f %c”, pqr(a, pqr(b, pqr(c);

}

struct abc *modify(vwx)

struct abc *vwx;

{

struct abc *twx;

twx(a = vwx(a+100;

twx(b = vwx(b+100.5;

twx(c =’z’;

return (twx);

}

Declaring structures using typedef statement

1. typedef struct abc{

int a;

float b;

char c;

} node;

We can declare variables of structure abc using the name node as node x, y, z;

then x, y & z are the structure variables of type structure abc.

2. typedef struct{

int day;

int month;

int year;

} date;

typedef struct

{

char name[20];

int rollno;

date dob;

}student;

then we can declare variables of type student as student x, y, z;

Programming Problems
1. Develop a program in ‘C’ to create a database of the following items using a structure data type:

Name of the patient

Sex

Age

Bed number

Section

Date of admission;

Your program should do the following things:

· Build a master table for all the patients.

· List the table, giving info about patients.

· Insert new patient.

· Delete a patient.

· Edit and modify the info about a patient.

· Search for a record that is printed.

Exercises
1.
Define a structure called record, which holds an integer called loop, a character array of five elements called word, and a float called sum.

a) Declare a structure variable sample, defined from a structure of type record.

b) Assign the value 100 to the field loop of the sample structure of type record.

c) Print out the value of the word array of the sample structure.

2. Define a structure called birthdays, whose fields is a structure of type times called btime and a structure of type date called bdate.

3. What distinguishes an array from a structure?
4. What characteristic must a structure have in order to be initialized within its declaration?
5. Give the meaning of (() operator.

6. What is wrong in the following structure declaration:

struct {

int a;

float b;

}

main(){

}

7. Point out the errors, if any, in the following programs:

a) main(){

struct employee{

char name[20];

int age;

float salary;

};

struct employee e;

strcpy (e.name, “Hadley”);

age=25;

printf (“%s %d”, e.name, age);

b) main (){

struct{

char name [25];

char language [10];

};

struct employee e={“Hadley”, “C”};

printf(“%s %d”, e.name, e.language);

};

8. Explain when to use (.) operator and the arrow (() operator.

9. Write a declaration of a function returning a pointer to a structure of type book.

10. Is there any difference between these two statements?
(*thing).item =100;

thing(item = 100;

11. What is a self-referential structure?
12.
Give the output of the following:

a) main(){

struct sample
{

char ch[10];

char *str;

};

struct sample s1={“Delhi”, ”Hyderabad”};

printf (“%c %c \n”, s1.ch[0], s1.str);

printf (“%s %s”, s1.ch, s1.str); }

b) main (){

struct abc{

char *z;

int i;

struct abc *p;

};

static struct abc a[] = {

{“Delhi”, 1, a+1},

{“Hyderabad”,2, a+2},

{“Nagpur”, 3, a}

};

struct abc *ptr=a;

printf(“%s %s %s”, a[0].z, ptr(z, a[2].p(z);

}

INPUT / OUTPUT IN C

I/O function is classified into 3 broad categories:
Console I/O function: Functions to receive input from keyboard and display output on monitor.
Disk I/O function: Functions to perform I/O operates on a floppy disk or hard disk.
Port I/O function: Functions to perform I/O operation on various ports. (Low level I/O)

 I/O Functions

DISK – I/O

FILES
A file is place on disk where a group of related data is stored.

NEED FOR FILES
Many real life problems involve large volume of data, in such situations, the console-oriented I/O pose 2 major problems.

1. It becomes cumbersome & time consuming to handle large volumes of data through terminals.

2. The entire data is lost when either the program is terminated or the computer is turned off.

Files allow us to store information permanently and to access and alter that information whenever necessary.

NOTE C does not distinguish between sequential & direct access data files.
There are 2Different types of data files.
· stream-oriented or standard data files

· system-oriented or low-level data files

Stream-oriented data files are easier to work with than system-oriented data-files & are therefore more commonly used.

They use functions in C’s Standard I/0 libraries.

Formatted

 Unformatted Formatted

 Unformatted
Note In high level file I/O function Buffer Management is done by system I/O Functions whereas in low level I/O, it is done by programmer.

Text mode vs Binary mode - a comparison

	Text mode
	Binary mode

	1. In text mode, a new line character is converted into carriage return-line feed combination before being written to disk & vice-versa when the file is read by a C Program
	1. These conversions don’t take place in Binary mode.

	2.A special character whose ASCII value is 26, is inserted after the last character in the file to mark end of file.
	2. There is no such special character present in the binary mode file. The files keep track of the end of character present in the directory entry of file.

	3. Numbers in text mode are stored as string of characters using fprintf.

Eg.: 1234 occupies 2 bytes in memory, when transferred to the disk using fprintf it occupies 4 bytes.
	3.Stores the numbers in binary format using fwrite().

Note
· Two modes of files are not compatible i.e. file that has been written in text mode is read back only in text mode.
· Different modes in binary files are – rb, wb, ab.

· Different modes in text files are – rt, wt, at, r+, w+, a+

· Default mode is text mode.

Note fflush function, it is designed to remove or flush out any data remaining in the buffer.

Defining & Opening a File
To store data in a file, in the secondary memory, operating system should be given certain information.
They include

File name

Data structure

Purpose

File name
It is string of characters.

It may contain 2 parts a primary name & an optional Period with extension. (e.g. Doc, txt etc.)

Ex:

input.dat

store

prog.c

student.c

text.out

Data Structure
Data structure of a file is defined as FILE in the standard I/0 function definitions.

All files should be declared as type FILE before they are used.
File is a defined data type.

General format for opening & declaring a file

FILE *fp;

Declares fp as a pointer to the data type FILE
fp = fopen (“file name”, “mode”)

 strings

Opens the file named “file name” & assigns ‘fp’ to the file name.

It also specifies the mode.

NOTE The file pointer, which contains all information about the file, is subsequently used as communication link between the system & program.
MODES
Different modes are

r
open the file for reading only

w
open the file for writing only

a
open the file for appending the data to it.

r+
Existing file is opened to the beginning reading & writing.

w+
same as w except both for reading & writing.

a+
same as a except both for reading & writing.

One can open & use a number of files at a time. (This number is OS dependent).

When trying to open a file, one of the following things may happen, when mode is

WRITING (w)

A file with the specified name created, if the file does not exist.
If file already exists, then it is deleted.

Error if file cannot be opened.

APPENDING (a)

The file is opened with the current contents safe and the records are appended at the end of the file.

If the file does not exist, a file with specified name is created.

Error if file cannot be opened.
READING

If file exists, then the file is opened with the current contents safe;

If it cannot be opened error occurs.

Ex: file *p1, *p2;

p1= fopen (“data”, “r”);

p2= fopen (“results”, “w”);
CLOSING A FILE
A file must be closed as soon as all operations on it have been completed.
Closing a file ensures that all information associated with the file is flushed out from the buffers & all links to the file are broken.
Closing of file also prevents any accidental misuse of file.
If a same file is to be opened in different mode , then it is mandatory to first close that file.

Syntax for closing file
fclose(file_pointer);

Ex:
file *p1, *p2;

p1= fopen (“INPUT”, “w”);

p2= fopen (“output”, “r”);

…

fclose(p1);

fclose(p2);

INPUT/OUTPUT Operations on Files
Reading out of or writing to a file is accomplished using the standard I/0 routines.

Different Library Functions for I/O operations are

getc()
reads a character from a file.

putc()
writes a character to a file.

getw()
reads an integer to a file.

putw()
writes an integer to a file.

fprintf()
writes a set of data values to a file .

fscanf()
reads a set of data values from a file.

get c & putc functions
These functions handle one character at a time.

E.g.:
file *fp1, *fp2:

fp1 = fopen(“xxx”, “w”);

putc(c, fp1);

fp2 = fopen(“yyy”, “r”);

c = getc(fp2);

The 3rd statement writes the character contained in character variable c to the file, associated with fp1.

The 5th statement reads a character from the file, associated with fp2.

NOTE

The file pointer moves by one character for every operation of getc or putc.

The getc will return an end-of-file marked EOF file when end of file has been reached. (EOF character –Ctrl-Z, Ctrl-D).

getw & putw functions
These are integer-oriented functions.
These are similar to getc & putc functions.
General forms

putw(integer, fp);

 getw(fp);

Examples:

1. Read a string of lowercase alphabets from keyboard. Convert them into uppercase and display on the monitor, until (.) is encountered.

#include <stdio.h>

main(){
char ch;

printf(“enter text (type period to quit)\n”);

do{

ch = getche();
//character read is echoed on monitor

if (ch < 97 || ch > 122) continue;
//neglect any character other than lowercase alpha

//convert lower to upper and print

putchar(ch – 32);

} while(ch != `.`);

return;
}

include <stdio.h>

main(){
char ch;

printf(“enter text (type period to quit)\n”);

do{

ch = getch();
//character read is not echoed.

if (ch < 97 || ch > 122) continue;

putchar(ch – 32);

} while (ch != ‘.’);

return;
}

include <stdio.h>

main(){
char ch;

printf (“enter text(type period to quit)\n”);

do{

ch = getchar();
//character string is released for processing only when new line is entered.

if (ch < 97 || ch > 122) continue;

//neglect any character than lower case alpha

putchar (ch – 32);

//convert lower to upper and print

} while (ch != ’.’);

return;
}

2. To read a string of lower case alphabets until new line is encountered. Convert them to uppercase and write in a file “iofile”. Open the file in read mode and display it on monitor.

#include <stdio.h>

main(){
FILE *fp1;

char ch;

fp1= fopen(“iofile”, “w”); // to open file
do{
if (fp1 == NULL){

printf(“/n file cannot be opened”);
exit();
}

else

//read characters from keyboard and write in iofile until new line after converting into upper case.

putc(toupper(ch = getchar()), fpl);

} while(ch != `\n’);

fclose(fp1);

/*read from file and display on monitor */

if ((fp1 = fopen(“iofile”, ”r”)) == NULL){

printf(“/n error- file cannot be opened”); exit();
}

else do{

putchar(ch = getc(fp1));

} while (ch != ‘\n’);

fclose(fp1);

return;

}

The fprintf and fscanf functions
These functions can handle a group of mixed data simultaneously.

General form of fprintf:

fprintf(fp, “control sting”, list);

where

fp - file pointer associated with a file that has been opened for writing.

Control string - Contains output specifications for the items in the list.

List - may include variable, constants & strings.

Ex: fprintf(f1, “%s %d %f”, name, age, 7.5);
General format of fscanf
fscanf(fp, “control-string”, list);
The above statements, reads the item in the list from the file specified by fp.

Ex: fscanf (f2, “%s %d”, itemdesc, &quantity);
Note fscanf returns the value of EOF, when end of the file is reached.
fscanf (stdin, “control string”, list).

The function reads from the file stdin, which refers to the terminal.

fprint(stdout, “control string”, list).

The function writes from the file to the file stdout, which refers to the screen.

Program to read from a file & write to another file.

#include <stdio.h>
main(){

file *fp,*fp1;

struct emp{

char name[40];

int age;

float bs;

}

struct emp e;

fp = fopen(“employee.dat”, “r”);

if (fp == Null){

puts(“cannot open file”);

exit();

}

fp1 = fopen (“out.dat”, “w”);

while (fscanf(fp, “%s %d %f ”, e.name, &e.age,
&e.bs) !EOF){

fprintf(fp1, “%s %d %f ”, e.name, e.age, e.bs);

}

fclose (fp);

fclose (fp1);

}

Binary Mode

fread & fwrite functions
It provides efficient way of reading & writing records(structures).

General Format

fwrite (arg1, arg2, arg3, arg4);
arg1
address of the structure variable to be written to disk.

arg2
Size of structure variable in bytes

arg3
indicates no. of such variables to be written at one time.

arg4
pointer to the file.

Ex: fwrite (&e, sizeof(e), 1, fp);
fread

format is same as that of f write

Note fread returns the number of records read.

Program to write & read back the following data item to and from disc file using fread & fwrite.

#include <stdio.h>
main(){

file *fp ;

struct emp{

char name[40];

int age;

float bs;

} e;

fp = fopen (“EMP.DAT”, “wb”);

//creating file

if (fp == NULL){

puts(“cannot open file”);
exit();

}

while (another == ‘y’){

printf (“\n enter name, age & basic salary:”);

scanf(“%s %d %f”, e.name, &e.age, &e.bs);

fwrite(&e, sizeof(e), 1, fp);

printf(“Add another record (Y/N”);

fflush(stdin);

another = getche();
}

fclose(fp);

fp = fopen (“emp.dat”, “rb”);

//opening the file to read records.

if (fp == NULL){

puts(“cannot open file”);

exit();

}

while (fread (&e, sizeof(e), 1, fp) ==1)

//read record

printf(“\n %s %d %f”, e.name, e.age, e.bs);

//display records on screen

fclose(fp);

}

Error handling during i/o operations
· Error situations include
· Trying to read beyond the end-of-file mark.

· Device overflow.

· Trying to use a file that has not been opened.

· Trying to perform an operation on a file, when the file is opened for another type of operation.

· Opening a file with an invalid file name.

· Attempting to write to a write-protected file.

NOTE Unchecked errors results in a premature termination of the program or incorrect output.
There are 2 status-inquiry library functions:

feof

ferror

These can help to delete I/O error in the files.

feof function
Used to test for an end of file condition.
It takes a file pointer as its argument & returns a non-zero integer value if all of the data from the specified file has been read; otherwise it returns a zero.

Ex:
if (feof (fp))

printf (“End of data \n”);
This statement displays the message, on reaching the end of file condition.

ferror

This function reports the status of the file indicated.
It takes a file pointer as its argument & returns a non-zero integer if an error has been detected up to that point, during processing.
It returns zero otherwise.

NOTE If the file cannot be opened for some reasons, then the function returns a NULL. This can be used to test whether a file has been opened or not.
Ex:
if (fp == null)

printf (“file could not be opened \n”).
RANDOM ACCESS TO FILES

Different functions in I/O library are
fseek()

Sets the position to a desired point in the file.
General format is

fseek(FILE *fp, long num bytes, int position);

where
num bytes Number of bytes from on function that were become new current position.

position is

beginning of file
SEEK_SET(0)

current position
SEEK_CUR(1)

end of file

SEEK_END(2)

ftell()
Gives the current position in the file.
rewind()
Set the position to the beginning of the file.

Given the following record structures of old_bat_file, update the file as given below.

Record structure:

material_code (int)

mat_desc (char 20)

supplier_code (int)

supplier_status (char 1)
The transaction data

mat_code (int)

mat_designation (char)

supplier_code (int)

supplier_status (int)

1. Add new record

2. Update record

3. Delete record

4. Exit

Use fseek command to locate the record.

#include<stdio.h>
main(){

 file *fp, *ft;

 char another, choice;

 struct balance{

int mat_code;

char mat_desc[20];

int sup_code;

char sup_status;

 };

 struct balance b;

 longint recsize;

 int matcode;

 fp = fopen (“BAL.DAT”, “r+”);

 if (fp == NULL){

fp = fopen (“BAL.DAT”, “w+”);

 if (fp == NULL){

puts (“cannot open file”);

exit();

 }

 }

 recsize = sizeof(b);

 while (1){

clrscr();

gotorc(10, 30);
//Places the cursor at appropriate positions on the screen

printf(“1. Add Record”);

gotorc (12, 30);

printf (“2. update record”);

gotorc(14, 30);

printf(“3. Delete Record”);

gotorc (20, 30);

printf(“Enter the choice”);

fflush (stdin);

choice = getche();

switch (choice){

 case ‘1’:
fseek(fp, 0, SEEK_END);

another = ‘Y’;

while (another == ‘Y’){

 printf (“\n enter material code & description, supplier code and status”);

 scanf(“%d %s %d %c”, &b.mat_code, b.mat_desc, &b.sup_code, b.sup_stat);

 fwrite(&b, recsize, 1, fp);

 printf(“\n add another record (Y/N)”);

 fflush(stdin);

 another = getche();

}

break;

case ‘2’:

 another =‘Y’;

 while (another == `Y’){

printf(“\n enter material code to modify”);

scanf (“%d”, mat_code);

rewind(fp);

while (fread (&b, recsize, 1, fp) == 1){

 if (strcmp(b.mat_code, matcode) == 0{

printf(“\n Enter new material code &
 description, system code & status”);

scanf(“%d %s %d %c”, &b.mat_code,
 b.mat_desc, &b.sup_code, b.sup_stat);

fseek(fp, –recsize, SEEK_CUR);

fwrite(&b, recsize,1, fp);

break;

 }

}

printf(“\n modify another record (Y/N)”);

fflush(stdin);

another = getche();

}

break;

case ‘3’:

 another = ‘y’;

 while (another == ‘y’){

printf(“\n Enter material code to delete”);

scanf (“%d”, mat_code);

ft = fopen (“TEMP.DAT”, “w”);

rewind(fp);

while (fread (&b, recsize, 1, fp) == 1){

 if (strcmp(&b.mat_code, mat_code) != 0)

fwrite(&b, recsize, 1, ft);

}

fclose(fp);

fclose (ft);

remove(“BAL.DAT”);

rename(“TEMP.DAT”, “BAL.DAT”);

fp = fopen (“BAL.DAT”, “r+”);

printf(“Delete another record (Y/N)”);

fflush(stdin);

another = getche();

 }

 break;

case ‘4’:

 fclose(fp);

 exit();

}

 }

}

Program using fwrite and fread; create a file called infile.dat with the following record structure:

int ac_no; char acname[30]; int bal; and print the file record by record; (no. of records = 5).

#include<stdio.h>

main(){
 FILE *fp1;

 int i;

 struct account {

int acno;
char acname [30];
int val;
 } ac[5];

 clrscr();

 if ((fp1 = fopen(“infile.dat”, “w”) == NULL){
printf (“opening error”);
exit();
 }

 for (i = 0; i < 5; i++){

printf (“\n enter account particulars”);

scanf(“%d %s %d”, &ac[i], acno, ac[i]. acname, &ac[i]. bal);

fwrite(&ac[i], sizeof (ac[i]), 1, fp1);

 }

 fflush(stdin);

 fclose(fpl);

 fpl = fopen(“infile.dat”, “rt”);

 if (fp1 == NULL){

printf(“file open error”);

exit(c);
 }
 for (i = 0; i < 5; i++) {

fread(&ac[i], sizeof(ac[i]), 1, fp1);

printf(“%d %s %d”, ac[i].acno, ac[i].acname, ac[i].bal);

fclose (fp1);

return();

 }

}
Program using fseek create a random file with five records and print them sequentially along with the offset of the record.

include <stdio.h>

main (){
 FILE *fi;

 int i, recsize, n=0L;

 int woffset;

 struct account {
int acno;

char acname[30];
int bal;
 };

 struct account ac[5];

 clrscr();

 recsize = sizeof(ac[1]);

 if ((fi = fopen(“infile.dat”, “w”)) == NULL){

printf(“file error”);
exit(1);
 }

 for (i = 0; i < 5; i++){

printf(“enter particulars”);

scanf(“%d %s %d”, &ac[i].acno, ac[i].acname, &ac[i].bal);;

fwrite(&ac[i], recsize, 1, fi);

 }

 fclose(fi);rewind(fi);

 if ((fi = fopen(“infile.dat”, “r”)) == NULL){

printf(“file open error”);
exit(1);
 }

 fseek(fi, 0L, 0);

 for (i = 0; i < 5,i++){

fseek(fi, n, 0);

woffset = ftell(fi);

fread(&ac[i], recsize, 1, fi);

printf(“\n %d %s %d”, ac[i].acno, ac[i].acname, ac[i].bal);

printf(“\n offset=%d”, woffset);

n = n + recsize;

 }

 fclose(fi);

 return;
}

Program using fseek, create a random file with 5 records & print them in reverse order.

#include <stdio.h>

main(){

 int i, recsize;

 int n = 0;

 struct account{
int acno;
char acname[30];
int bal;
 } ac[5];

 clrscr();

 recsize = sizeof(ac[1]);

 n = recsize;

 if ((fi = fopen(“infile.dat”, “w”)) == NULL){

printf(“file error”);
exit(1);
 }

 for (i = 0; i < 5;i++){

printf(“enter particulars \n”);

scanf(“%d %s %d”, &ac[i].acno, ac[i].acname, &ac[i].bal);

fwrite(&ac[i], recsize, 1, fi);
 }

 fclose(fi);
 rewind(fi);

 if ((fi = fopen(“infile.dat”, “r”)) == NULL){

printf(“file open error”);
exit(1);
 }

 for (i = 0; i < 5; i++){

fseek(fi, 0L, 2);

fseek(fi, –(i + 1) * n, 1);

fread(&ac[i], recsize,1, fi);

 printf(“\n %d %s %s %d”, ac[i].acno, ac[i].acname, ac[i].bal);

 }

 fclose(fi);

 return;
}
 2100

2100

 10

 10

2100

 10

 10

 2100

 10

c

c

c

2100

c

c

 6005

 10

 10

Disk I/O Functions

Console I/O Function

printf

scanf

Formatted function

Unformatted function

getch()

getche()

getchar()

putch()

putchar()

gets()

puts()

Binary

Text

Disk I/O Functions

Low level I/O functions

 (System I/O function)

High level file I/O function

(Standard I/O or Stream I/O)

Text mode

Unformatted Functions

getc(), putc()

fgetc(), fputc()

fgets(), fputs()

fprint,

fscanf

Formatted Functions

C & Data Structures 68

