

UNIT-IV

Stacks

Representing Stacks in C

Infix, Postfix and Prefix Notation

Recursion in C

Queue and its sequential presentation

Circular Queue

Deque

Introduction to Data Structures

IT Solution of any problem consists of two components {HW, SW}

S/W requires

i) to understand the problem & solve and this is achieved through computer programs.

 Program: { Data + Algorithm}

ii) To understand the data items and their inter-relationships

· to derive methods of storing data in computer memory

· to understand possible operations on the data and derive algorithms.

 Eg: Array: Homogeneous data items

· stored in sequential memory locations

· creation, access of an element.

Stack – collection of Data items (collectively called info)

· sequential memory

· creation of a stack, push an element, pop an element etc.

Data Structures : {Data items + storage method + algorithm}

Some times same data may be organised in different ways or same process is obtained in different ways for memory space efficiency.

I. Consider a two dimensional sparse matrix of size (1000*1000) elements of integer type (Long) out of which there are only 1000 non zero elements.

Normal Representation:

1000000*4 : 4 * 106 bytes of memory.

Alternate Representation:

Element: {Value, row index, column index}

Suppose we represent element with five fields as below.

Element{value, rowindex, colindex, rowpointer, column pointer}

Row pointer – pointer points the next nonzero element in the same row;

Colpointer – pointer points to the next nonzero element in the same column.

As the fields of element are of long integer type through each node takes 20(5*4) bytes.

Total Memory requirement:

20*1000 = 20000 bytes.

Note : There is a considerable saving of memory in second representation.

· However this representation requires to devise algorithms for operations such as creation, addition, multiplication etc. as the normal algorithms do not work.

Data Structure

Definition: Study of different methods of organizing the data in memory and possible operations on these structures and devise algorithms for these operations.

Basic Types

Arrays

Structures

Stacks

Queues

Linked lists

Trees

Graphs etc.

Classification

Linear

Non-Linear

Linear

Organise the data in a linear sequence exhibiting adjacency of elements.

Ex: Array, linked lists, Queue, Stack etc.

Note : Adjacency is implicit or given by a pointer and unique.

Non-Linear

Organise the data in a non-linear fashion

Ex: Trees

 Graphs

Selection

Mainly based on Execution time and storage space.

Stacks

Uses

· In situations where useful information must be held temporarily during the course of a program.

· In compilers in evaluation of an expression by recursion.

· In memory management in operating system.

· Evaluation of an arithmetic expression

· Nesting of functions.

· Storage of register contents in process swapping.

Definition

An ordered collection of data items into which new items may be inserted and from which date items may be deleted at one end (top of the stack).

Ex: A pile of plates in a cafeteria

 A coin stacker

 A railway system for shunting cars

Pile of trays/Coin stacker
A Railway shunting system
· In a stack, the last in element is always the first out element.

· Operates on a Last In First Out (LIFO) basis

· Most commonly used as a place to store local variables

parameters

and return addresses

when a function is called

Note : Stack is a dynamic object with respect to size.

General Terminology
Representation of a Stack
Stack{storage array, s, size (sz), stack pointer(Top)}

Operation on Stacks
· Insert (push) an item into the stack.

 stack pointer is incremented and element is pushed

· Delete (pop) an item from the stack.

Element is popped and stack pointer is decremented.

Stack Pointer (TOP)

Keeps track of the current position on the stack.

- In implementation of a stack, a finite memory is used for storing the elements of a stack.

Overflow

Occurs when we try to insert (push) more information on a stack than it can hold

Underflow

Occurs when we try to delete (pop) an item off a stack, which is empty.

Insert an item into the stack
Procedure PUSH (S, MAX, TOP, ITEM)

S

Array

MAX

Stack size

TOP

Stack pointer

ITEM

value in a cell

1. {Check for stack overflow}

If TOP(MAX then

Print (‘Stack Overflow’)

Return

2. {Increment pointer Top}

TOP (TOP+1

3. {Insert ITEM at top of the stack}

S [TOP] (ITEM

Return

Delete an item from the stack
Function POP (S, TOP)

S

Array

TOP
stack pointer

1. {Check for stack underflow}

If TOP=0 then

Print (‘Stack Underflow’)

Return

2. {Return former top element of stack}

Return (S[TOP+1]) ITEM

3. {Decrement pointer TOP}

TOP TOP –1

Problem : Write a C program to create a stack and do operations of insert, delete, display the contents of a stack.

#include <stdio.h>

int top=-1;

int info;

void push();

void pop();

void display ();

void main()

{ int *s, n, ch;

clrscr ();

printf(“enter no of elements”)

scanf (“%d”, &n);

s=(int*) malloc (n*size of (int));

do {

printf(“\n Choices are:\n”);

printf(“1: push an element\n”);

printf(“2: pop an element\n”);

printf(“3: display elements instance \n”);

printf(“4: exit \n”);

printf(“enter the option:”);

scanf(“%d, &ch);

switch(ch){

case 1: /* push an element into stack */

if (top ==(n-1)

{printf(“\n stack overflow”);

exit;} //testing stack is empty

else push(s);

break;

case 2: /* pop an element from stack */

if (top<0)

{printf(“\n stack underflow);

exit; } // testing stack is empty

else pop(s);

break;

case 3: /* printing the contents of stack */

printf (“\n contents of stack are:”);

display (s);

break;

case 4: break;

}

while (ch! = 4);

}

/* push an element into stack */

void push (int*s)

{

top++;

printf(“enter element to be inserted\n”);

scanf (“%d”, &info);

*(s+top) = info; //storing into stack

}

void pop(int *s)

{

info = *(s+top); //deleting from stack

top--;

}

/* display elements of stack */

void display (int *s)

{

int i;

for (i = 0, i<= top; i++)

{

printf (“\n%d”, * (s+i));

}

}

APPLICATIONS

Infix, Postfix and Prefix Expressions
Infix Expression

Operator between two operands

<Operand> < operator> <operand>

Ex: A + B

Prefix/Polish Expression

Operator precedes both operands

<Operator> <operand> <operand>

Ex: + A B

Postfix/Suffix/Reverse Polish Expression

Operator follows both operands

<Operand> <operand> <operator>

Ex: A B +

In C language expressions are represented in infix notation.

Eg: a*(b+c)

 a* (b+c)/(d+e)

Infix operation precedence
 Highest

 Parntheses ()

left to right

 Multiplication *, Division /
left to right

 Addition +, Subtraction -

left to right

 Lowest

Infix

Prefix

Postfix
a+b-c

-+abc

ab+c-

a+b*c

+a*bc

abc*+

(a+b)*c

*+abc

ab+c*

a+(b-c*d/e)-(f/g)
-+a-b/*cde/fg

abcd*e/-+fg/-

((a+b*c)/d/e/f*g+h)/i //+a*bc+*//defghi
abc*+de/f/g*h+/i/

Evaluation of Postfix expressions
S1. Scan the expression from left to right for one symbol at a time.

S2. If it is an operand, push into the stack;

else

pop the two operands from the stack,

Apply the indicated operation, and push the result into the stack.

Repeat the S1 and S2 until end of input expression.

S3.
Pop the top element of the stack, which is result of the expression.

· Value of operand/operator)

 INPUT : expression in post fix

 OUTPUT: Result of expression

Example: a b c / d * + = a + (b / c) * d and

Let a=5, b=4, c=2 and d=z

Operand Scanned Contents of stack

 a 5

 b 4

 c 4 2

 / 2

 d 2 2

 * 4

 + 9

Conversion of infix expression to postfix expression

 Input : Expression string,

 Output: Post fix string

S1. Scan the input infix expression from left to right taking one symbol at a time till end of string; go to S6.

S2. If an operand is encountered, place it into the output. Go to S1.

S3. If a left parenthesis is encountered, push it into the stack. Go to S1.

S4. If a right parenthesis is encountered, pop the stack and append the operator to the output until the left parenthesis is encountered.

Discard both parenthesis; and go to S1.

S5. If an operator is encountered (say current operator)

· Repeatedly pop the stack and append the popped operator to output if it satisfies the stack top operator is same or higher precedence than the current operator just encountered and the stack is not empty. Else push current operator into the stack . Go to S1.

 Else add the operator to stack. Go to S1.

S6. Pop the stack and add to output string till the stack is empty.

Example: (a+b*c*d)*(e+f/d)

Scanned
 Contents of
 Output postfix

Symbol

Stack

 Expression

(

(

-

a

(

a

+

(+

a

b

(+

ab

*

(+*

ab

c

(+*

abc

*

(+**

abc

d

c+**

abcd

)

abcd**+

 *

*

abcd**+

(

*(

abcd**+

e

*(

abcd**+e

+

*(+

abcd**+e

f

(+

abcd**+ef

/

*(+/

 abcd**+ef

d

*(+/

 abcd**+efd

)

 **

abcd**+efd/+

 abcd**+efd/+*

Recursion
Technique of defining a function or a process in terms of itself is called recursive definition.

Note: It should not generate infinite sequence of calls on itself and should terminate.

Examples
1. Factorial of N

Factorial (N)=1, if N=0

= N * factorial (N-1), if N>0

for N=5,

factorial (5) = 5* factorial (4)

 = 20 * factorial (3)

 = 60 * factorial (2)

 = 120 * factorial (1)

 = 120 * factorial (0)

= 120

2. Calculation of Fibonacci numbers
Fibonacci(n) =1,
 for n=0 or n=1

 = fibonacci(n-1) + fibonacci(n-2),

 for N>= 2.

for n=4,

fibonacci(4) = fibonacci(3) + fibonacci(2)

 = fibonacci(2) + fibonacci(1)

 +fibonacci(1)+ fibonacci(0)

 = fibonacci(1)+fibonacci(0) +1+1+1

 = 1+1+3

 = 5

3. Euclidean Algorithm (to find GCD of two integers)

GCD(m,n) = GCD(n,m), if n>m

 = m,
 if n=0

 =GCD(n,MOD(m,n)), otherwise
where MOD(m,n) is m modulo n.

Example GCD(24,10) = GCD(10,4)

 = GCD(4,2)

 = GCD(2,0)

 = 2

4. Ackermann’s function

A(M,N) = N+1, if M=0

 =A(M-1,1), if N=0

 = A(M-1, A(M,N-1), otherwise

A(1,1) = A(0, A(1,0))

 = A(0, A(0,1)) ;

 = A(0,2)

 = 3

5. Towers of Hanoi problem statement :

Statement:

Given N discs of decreasing size stacked on one peg(A) and two empty pegs(B&C)

It is required to transfer all the discs into a second peg (C) in decreasing order of size from bottom. (i.e. in same configuration)

The third peg(B) may be used as temporary storage.

The movement of the discs is restricted by the following rules :

1.
Only one disc may be moved at a time.

2.
A disc may be moved from any peg to any other.

3.
At no time a larger disc rest upon a smaller disc.

Solution :

1.
If N=1 move A to C and stop . else

2.
Move top N-1 discs from A to B, using C as temporary

3.
Move disc N from A to C.

4.
Move N-1 discs from B to C, using A as temporary.

Example : Tower of hanoi with 3 disks.

 Move disk 1 from A to C.

 Move disk 2 from A to B.

 Move disk 1 from C to B.

 Move disk 3 from A to C.

 Move disk 1 from B to A.

 Move disk 2 from B to C.

 Move disk 1 from A to C .
Queues

Definition

Ordered collection of data such that the data is inserted at one end and deleted from another end.

First element inserted is the first element to be deleted.

Collection of items to be processed on a First In First Out (FIFO) / First Come First Served (FCFS).

Eg. -A Structure where many people line up for few resources.

 - Process Queue in a time sharing operating system

Representation

 Ascending order of memory

Deletion insertion

 Front Rear

Operations on Queues
Inserting an element into a queue
Procedure QINSERT (Q, MAX, F, R, ITEM)

Q Array

MAX size of Queue

F Front Pointer of queue

R Rear Pointer of queue

ITEM Information to be inserted at the rear of queue.

Note: At the time of creation of Q,F=R=0;

S1. {Check for queue overflow}

 If R >= MAX then

 Print (‘Queue overflow’)

 Return

S2. {Increment Rear pointer}

 R R + 1

S3. {Insert new element at rear end of queue}

 Q[R] (ITEM

S4. {If initially, the queue is empty, adjust the front pointer}

 If F=0, then F(1.

Deleting an element from a queue
Function QDELETE (Q, F,R)

 Q
Array of size MAX

 F
Pointer to the front of queue

 R
Pointer to the rear of queue

 ITEM Temporary variable

S1. {Check for queue underflow}

If F=0 then

 Print (‘Queue Underflow’)

 Return

S2. {Delete the queue element at front end and store it into item}

 ITEM Q[F]

S3. {If queue is empty after deletion, set front and rear pointers to 0}

 If F=R then

 F 0

 R 0

{Otherwise increment front pointer}

 Else F F+1

Return (ITEM)

 Trace of operations on a simple queue

 Max =4

 Empty queue

 F R Front & Rear not initialized

 Insert A

 Front & Rear initialized

 FR

 Insert B

 Rear incremented

 F R

 Insert C

 Rear incremented

 F R

 Delete A

 Front incremented

 F R

 Delete B

 Front incremented

 F R

 Insert D

 Rear Incremented

 F R

 Insert E

 Queue Overflow

 F R

Problem : Write a C program to create a queue and do operations of insert, delete, display the contents of a queue.

#include <stdio.h>

int fr, re;

int elem;

int *q;

//malloc(int*) (n*sizeof(int));

void insert();

void delete();

void display();

void main ()

{

int n, op;

char elem;

fr = -1;

re=-1;

clrscr();

printf(“\nenter size of Q:”);

scanf(“%d”, &n);

q=(int) malloc(n*sizeof(int));

//creation of q

do{

printf(“\n1:add an element”);

printf(“\n2: remove an element);

printf (“n3: print the elements in Q”);

printf(“\n4:exit; enter the option:”); scanf(“%d”,&op);

switch(op){

case 1: insert (q,n);

break;

case 2: delete 1(q,n);

break;

case 3: display(q);

break;

case 4: exit();

}

}while ((op>0)&&(op<5));

return;

}

//To insert an element into Q

void insert(int *q, int n)

{

if (re==(n-1)

{printf(“\n overflow”);

exit();}

else re++;

printf(“\nenter elements to insert:”);

scanf(“%d”,&elem);

q[re]=elem; //insert element

printf(“\ninserted elements pos is: %d ele=%d”, re, q[re]);

if(fr==-1)fr=0;

return;

}

//To delete an element from Q

void delete(int *q, int n)

{

printf(“\nfr=%d”, fr);

if(fr==re)

{printf(“\n element deleted: %d”, *(q+fr));

printf(“\n Q is empty”);

fr=-1;

re=-1;

return;

}

elem=*(q+fr); //delete element

printf(“\n deleted element pos is:%d ele=%d”, fr, elem);
if fr==re)

{fr=-1;

re=-1}

else if (fr==(n-1))

fr=0;

else fr++;

printf(“fr=%d”, fr);

return;}

// to display elements of q

void display (int*q)

{int i;

if (fr>=0)

{printf(“\nthe queue elements are”);

for (i=fr; i<=re; i++)

printf(“\n%d\t”,*(q+i));}

else printf(“\n the q is empty \n”); return;}

CIRCULAR QUEUES

Definition

A queue in which all locations are treated as circular such that the first location (Q[1]), follows the last location (Q[MAX]).

Representation

 … 4 R

 Max-1 3

 MAX 2

 1

 F

Operations on circular Queue

Inserting an element into a circular queue

Deleting an element from a circular queue

Inserting an element into a circular queue

Procedure CQINSERT (CQ, MAX, F, R, ITEM)

 CQ Array

 MAX Size of Array

 F Pointer to Front of a circular queue

 R Pointer to Rear of a circular queue

 ITEM Element to be inserted at the rear

 of a circular queue.

S1. {Reset rear pointer}

 If R = MAX then

 R 1

 Else R R+1

S2. {Check for overflow}

 If R=F then

 Print (‘Circular queue overflow’)

 Return

S3. { Insert an element}

 CQ[R] ITEM

S4. {Set front pointer properly}

 If F=0 then F 1

 Return

Deleting an Element from a circular queue

Function CQDELETE (CQ, MAX, F, R)

CQ
Array

MAX Size of array

F Pointer to Front of the circular queue

R Pointer to Rear of the circular queue

ITEM Temporary variable

S1. {Check for Underflow}

 If F=R then

 Print (‘Circular queue Underflow”)

 Return.

S2. If F=N, then F 1, else F F + 1

[

S3.{Delete element into temporary variable}

 ITEM CQ[F]

 Return (ITEM) ;

S4.{Check for circular queue is empty after

 deletion}

 If F = R then

 F 0

 R 0

{Otherwise set front pointer properly}

 Else

 if F=MAX then F 1

 Else F F+1.

Return (ITEM).

 Trace of operations on a circular queue
 MAX = 4

 Empty

 Front & Rear not initialized

cq insert A

Front & Rear initialized

 F R

cq insert B

Rear incremented

F R

 cq insert C

Rear incremented

 F R

cq insert D

Rear incremented

 F R

cq delete A

Front incremented

 F R

cq insert E

Rear Set properly

 (R > MAX)

 R F

cq delete B

Front incremented

 R
 F

cq insert F

Rear incremented

R F

cq delete C

Front incremented

 R F

cq delete D

Front incremented

 (F > MAX)

 F R

cq delete E

Front incremented

 F R

 cq delete F

Front & Rear set to zero since Q is empty.

R F

Problem : Write a C program to implement circular queue operations of insert, delete and display the elements.

#include <stdio.h>

int fr, re; int elem;

int *q;

void insert();

void delete();

void display();

void main(){

int n, op;

char elem;

fr=-1;

re=-1;

clrscr();

printf(“\n enter size of Q:”);

scanf(“%d”, &n);

q=(int)malloc(n*sizeof(int)); //creation of cq

do{

printf(“\n1:add an element);

printf(“\n2: remove an element);

printf(“\n3: print the elements in CQ”);

printf(“\n4: exit; enter the option:”);

scanf(“%d”, &op);

switch(op){

case 1:

if (re == n-1) re=0;

else re++;

if (re==fr){

printf (“\n overflow”);

exit;

}

insert(q, n);

break;

}

case 2:

if(fr==-1){

printf(“\n CQ underflow);

exit();

}

printf(“\n fr=%d re=%d”, fr, re);

if(fr==re){

printf(“\nelement=%dq empty”,

 *(q+fr));

re=-1;

fr=-1;

break;

}

delete(q,n);

break;

Case 3:

display (q);

break;

Case 4:

exit();

}

}while ((op>0) && (op<5));

return;

}

//TO INSERT AN ELEMENT INTO Q

void insert (int *q, int n){

printf(“\n enter elements to insert:”);

scanf(“%d”, &element);

*(q+re)=element;

printf(“\ninserted element is: %d element =

%d”, re, q[re]);

if (fr==-1) fr=0;

return;}

//TO DELETE AN ELEMENT FROM Q

void delete(int *q, int n){

printf(“\n fr=%d”, fr);

elem=*(q+fr);
//delete element

printf(“\ndeleted element pos is: %d element

= %d”, fr, element);

if fr==re){

fr=-1;

re=-1;

}

else if (fr == n-1) fr=0;

 else fr++;

 printf(“fr=%d”, fr);

return;

}

//To DISPLAY ELEMENTS OF Q

void display (int *q){

int i;

if(fr>=0){

printf(“\n the queue elements r”);

for (i=fr; i<=re; i++)

printf(“\n %d \t”, *(q+i));

}

else printf(“\n the q is empty \n”);

return;

}

DEQUE
Insertions and deletions are made to or from either end of the queue.

Inventions Deletion
 Insertion

Deletion

 Front Rear

Types of Deque

Input restricted Deque

 Allows insertions at only one end.

Deletion Deletion

Insertion

 Front Rear

Output restricted Deque
 Allows deletions from only one end.

 Deletion

Insertion Insertion

 Front Rear

PRIORITY QUEUES
Able to insert or delete items from any position based on some property (such as priority of the task to be processed).

Simple priority queue with three separate queues

	R1
	R2
	…
	…
	RI-1
	01
	02
	…
	...
	0J-1
	B1
	B2
	…
	…
	BK-1
	
	
	
	

	1
	1
	…
	…
	1
	2
	2
	…
	…
	2
	3
	3
	…
	…
	3
	
	
	
	

Priority RI Oj Bk
Each queue exhibits a strictly FIFO

Elements in the second queue are removed only when the first queue is empty.

Elements from the third queue are removed only when the first and second queues are empty.

When elements are added, they are always inserted at the end of one of the queues as determined by the priority.

A

A B	

A B C

 B C

 C

 C D

 C D

A

A B

A B C

A B C D

 B C D

E B C D

E C D

E F C D

E F D

E F

 F

Rowindex Colindex

Row Value Col

Pointer Pointer

46

