Unit I – Geometry & line generation

COMPUTER GRAPHICS
Unit I - Geometry & line generation

Points, lines, planes

Pixels and frame buffers

Types of display devices

DDA and Bresenham's line algorithms

Bresenham's algorithms for circle generation

Algorithm for ellipse generation

Character generation

Aliasing and antialiasing

Computer Graphics
Study of techniques to improve communication between human and machine.

Giving the computer the ability to express its data in pictorial form can greatly increase its ability to provide information to the human user.

In interactive computer graphics, the user interacts with the machine.

Computer graphics allows communication through pictures, charts, and diagrams.

A picture is worth thousand words.

Applications
Displaying Management Information as Charts and Diagrams.

Describing scientific theories and models in Pictorial form.

In Computer Aided Design, displaying

an aircraft wing,

a highway layout,

a printed circuit board,

a building blueprint,

a machine part,

and so on.

Creating all kinds of geographic information as Maps.

Provides entertainment through video games.

Enriches classroom instruction with diagrams and simulations.

Points, lines and Planes

Point

. (x, y)

Specified with an ordered pair of numbers (x, y).

x
Horizontal distance from the origin.

y
Vertical distance from the origin.

Infinitesimal.

Line

p2(x2, y2)

 p1(x1, y1)

Two points specifies a line.

Line Segment

 p2(x2, y2)

 p1(x1, y1)

The points on a line, which lie between two end points p1 and p2.

Plane

 y

 (0, 0) x

Pixels and frame buffers

Pixel
Picture element.

Smallest addressable screen element.

Each pixel has a name or address.

Computer graphics images are made by setting the intensity and colour of the pixels, which compose the screen.

We can think of the display screen as a grid, or array, of pixels.

The coordinate (i, j) will give the column and row of a pixel.

Each pixel will be centered at its coordinates.

Resolution

The maximum number of distinguishable points, which a line may have, is a measure of the resolution of the display device.

The greater the number of points, the higher the resolution.

Frame buffer
The array, which contains an internal representation of the image.

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

Collects and stores pixel values for use by the display device.

Vector Generation
The process of turning on the pixels for a line segment.

Select pixels, which lie near to the line segment.

Types of Display Devices

Raster Display System

Plotting System

Direct View Storage Tube (DVST) System

Plasma Panel System

Liquid Crystal Display

Vector Refresh Display System

Raster Display System

 00000010

 LINE-ABS (.2,.2) 00000100

 00001000

 User Program Frame Buffer Raster Display

In Raster Display System, the information for each pixel is stored in the computer memory called frame buffer. The memory is scanned and displayed by a special hardware called direct memory access.

Plotting System

 LINE-ABS (.2, .2)

 User Program

 Plotter

In plotting system, the display system remembers the image instead of using computer memory. A pen is lowered onto paper and moved under the direction of a vector generation algorithm.

Once the line is drawn, the ink on the paper “remembers” it, and the computer need not consider it further.

The main disadvantage to this approach is that once drawn, a line cannot be easily removed. If we wish to change the image on the plotter by removing a line, we must get a fresh piece of paper and redraw the picture (without the removed line). This can be time-consuming and can use a lot of paper. For this reason, plotters are not the best devices for interactive graphics.

Direct View Storage Tube System

 LINE-ABS (.2,.2)

 User Program
 DVST Display

Behaves much the same way as a plotter.

As was the case with the plotter, one cannot alter a DVST image except by erasing the entire screen and drawing it again. This can be done faster than on a plotter.

Plasma panel system

Allows selective erasing.

Contains a gas at low pressure sandwiched between horizontal and vertical grids of fine wires. A large voltage difference between a horizontal and vertical wire will cause the gas to glow as it does in a neon street sign. A lower voltage will not start a glow but will maintain a glow once started. Normally the wires have this low voltage between them. To set a pixel, the voltage is increased momentarily on the wires that intersect the desired point. To extinguish a pixel, the voltage on the corresponding wires is reduced until the glow cannot be maintained. Plasma panels are very durable and are often used for military applications. They have also been used in the PLATO educational system.

Liquid Crystal Display

Flat panel display technology.

Because of its low voltage and power requirements, it is lighter in weight, making it the display of choice where portability is required.

In a liquid crystal display, light is either transmitted or blocked, depending upon the orientation of molecules in the liquid crystal. An electrical signal can be used to change the molecular orientation, turning a pixel on or off. The material is sandwiched between horizontal and vertical grids of electrodes, which are used to select the pixels.

Vector Refresh Display System

 LINE-ABS (.2, .2) 2, 0.2, 0.2

 User Program Display File Display
 Display

 Processor

Stores the image in the computer’s memory.

To specify a line segment, all that is required is the coordinates of its endpoints.

The vector refresh display stores only the commands necessary for drawing the line segments in a display file. They are examined and the lines are drawn using a vector generating algorithm.

Refresh displays allow real time alteration of the image.

DDA (Digital Differential Analyzer) Algorithm

Positive Slope (left to right)

(xb, yb)

 (xa, ya)

for Gentle Slope (m (1)

yk+1 = yk + m

for Sharp Slope (m (1)

xk+1 = xk + 1/m

Positive Slope (right to left)

(xa, ya)

 (xb, yb)

for Gentle Slope (m (1)

yk+1 = yk - m

for Sharp Slope (m (1)

xk+1 = xk - 1/m

Procedure

Let the two end points are (xa, ya) and (xb, yb).

1. dx = xb – xa and dy = yb – ya.

2. if |dx| > |dy| then steps = |dx| else steps = |dy|.

3. Starting with pixel position (xa, ya), determine

 the offset needed at each step to generate the next pixel position along the line path.

4. Loop through this process steps times.

lineDDA (int xa, ya, xb, yb)

{

int dx, dy, steps, k;

float xincrement, yincrement, x, y;

dx = xb – xa;

dy = yb – ya;

if (abs(dx) > abs(dy)) steps = abs(dx);

else steps = abs(dy);

xincrement = dx / steps;

yincrement = dy / steps;

x = xa;

y = ya;

setPixel (round(x), round(y), 1);

for (k = 1; k <= steps; k++)

{

x = x + xincrement;

y = y + yincrement;

setPixel (round(x), round(y),1);

}

}

Faster method.

Eliminates the multiplication.

The rounding operations and floating-point arithmetic are still time-consuming.

Bresenham’s Line Algorithm

Converts lines using only incremental integer calculations.

for Positive slope (m < 1)

Assuming we have determined that the pixel at (xk, yk) is to be displayed, we next need to decide which pixel to plot in column xk+1.

The choices are (xk+1, yk) and (xk+1, yk+1).

 yk+1 .

 y . d2

 yk . d1

 xk+1

y = m(xk + 1) + b

d1 = y – yk = m(xk + 1) + b – yk

d2 = (yk + 1) – y = yk + 1 – m(xk + 1) – b

d1 – d2 = 2m(xk + 1) – 2yk + 2b – 1

pk = (x(d1 – d2)

 = 2(y xk - 2(x yk + 2(y + (x(2b-1)

 = 2(y xk - 2(x yk + c

where c = 2(y xk - 2(x yk

pk+1 = 2(y xk+1 - 2(x yk+1 + c

pk+1 - pk = 2(y(xk+1 - xk) - 2(x(yk+1 - yk)

But xk+1 = xk +1

pk+1 = pk + 2(y - 2(x(yk+1 - yk)

yk+1 - yk is either 0 or 1, depending on the sign of pk.

p0 = 2(y - (x

Algorithm

Input the two line endpoints and store the left endpoint in (x0, y0).

1. Load (x0, y0) into the frame buffer, ie., plot the first point.

2. Calculate constants (x, (y, 2(y, 2(y-2(x, and obtain the starting value for the decision parameter as p0 = 2(y-(x.

3. At each xk along the line, starting at k = 0, perform the following test:

If pk<0, the next point to plot is

(xk+1, yk) and pk+1 = pk + 2(y.

Otherwise, the next point to plot is

(xk+1, yk+1) and pk+1 = pk + 2(y - 2(x.

4. Repeat step 4 (x times.

lineBres (int xa, ya, xb, yb) {

int dx, dy, x, y, xEnd, p;

dx = abs(xa – xb);

dy = abs(ya – yb);

p = 2 * dy – dx;

//determine which point to use as start, which as end

if (xa > xb) {

x = xb;

y = yb;

xEnd = xa;

};

else {

x = xa;

y = ya;

xEnd = xb;

};

setPixel(x, y, 1);

while (x < xEnd) do {

x = x + 1;

if (p < 0)

p = p + 2 * dy;

else
{

y = y + 1;

p = p + 2 * (dy – dx);

}

setPixel(x, y, 1);

}

}

Circle

Circle is frequently used in pictures and graphs.

A circle is defined as the set of points that are all at a given distance r from a center position (xc, yc).

 r

 yc

 xc
Midpoint circle algorithm

Circle function fcircle(x, y) = x2 + y2 – r2
Any point (x, y) on the boundary of the circle with radius r satisfies the equation

fcircle(x, y) = 0.

< 0, if (x,y) is inside the circle boundary
fcircle(x, y)
= 0, if (x,y) is on the circle boundary

> 0, if (x,y) is outside the circle boundary

Assuming we have just plotted the pixel at (xk, yk), we next need to determine whether the pixel at position (xk +1, yk) or the one at position (xk+1, yk–1) is closer to the circle.

pk
= fcircle(xk + 1, yk – ½)

= (xk + 1)2 + (yk – ½)2 – r2
pk+1
= fcircle(xk+1 + 1, yk+1 – ½)

= [(xk + 1) + 1]2 + (yk+1 – ½)2 – r2
or

pk+1
= pk + 2(xk + 1) + (y2k+1 – y2k) - (yk+1 - yk) + 1

where yk+1 is either yk or yk-1, depending on the sign of pk.

2xk+1 = 2xk + 2

2yk+1 = 2yk – 2

Each successive value is obtained by adding to the previous value of 2x and subtracting 2 from the previous value of 2y.

The start position (x0, y0) = (0, r)

p0
= fcircle(1, r – ½)

= 1 + (r – ½)2 – r2
or
p0
= (5/4) – r

p0
= 1 – r
(for r an integer)
The midpoint method calculates pixel positions along the circumference of a circle using integer additions and subtractions; assuming that the circle parameters are specified in integer screen coordinates.

Algorithm

1. Input radius r and circle center (xc, yc), and obtain the first point on the circumference of a circle centered on the origin as (x0, y0) = (0, r).

2. Calculate the initial value of the decision parameter as p0 = 5/4 – r.

3. At each xk position, starting at k= 0, perform the following test:

If pk < 0, the next point along the circle centered on (0, 0) is

(xk+1, yk) and pk+1 = pk + 2xk+1 +1.

Otherwise, the next point along the circle is (xk +1, yk – 1) and pk+1 = pk + 2xk+1 + 1 – 2yk+1 where 2xk+1 = 2xk + 2 and 2yk+1 = 2yk – 2.

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x, y) onto the circular path centered on (xc, yc) and plot the coordinate values: x = x + xc and y = y + yc.

6. Repeat steps 3 through 5 until x (y.

CircleMidpoint (int xcenter, ycenter, radius) {

int p, x = 0, y = radius;

plotpoints;

p = 1 – radius;

while (x < y) {

if (p < 0)

x = x + 1;

else {

x = x + 1;

y = y – 1;

};

if (p < 0)

p = p + 2 * x + 1;

else

p = p + 2 * (x – y) + 1;

plotpoints;

}

}

plotpoints {

setPixel (xcenter + x, ycenter + y, 1);

setPixel (xcenter – x, ycenter + y, 1);

setPixel (xcenter + x, ycenter – y, 1);

setPixel (xcenter – x, ycenter – y, 1);

setPixel (xcenter + y, ycenter + x, 1);

setPixel (xcenter – y, ycenter + x, 1);

setPixel (xcenter + y, ycenter – x, 1);

setPixel (xcenter – y, ycenter – x, 1);

}

Ellipse

An elongated circle.

An ellipse is defined as the set of points such that the sum of the distances from two fixed positions (foci) is the same for all points.

 y

 d1 .P(x, y)

 . .d2
 F1 F2
 x

If the distances to the two foci from any point P(x, y) on the ellipse are labelled d1 and d2, then the general equation of an ellipse can be stated as d1 + d2 = constant.

Expressing distances d1 and d2 in terms of the focal coordinates F1(x1, y1) and F2(x2, y2), we have

([(x-x1)2 + (y-y1)2] + ([(x-x2)2 + (y-y2)2] = constant

By squaring the equation, isolating the remaining radical, and then squaring again, we can rewrite the general ellipse equation in the form

Ax2 + By2 + Cxy + Dx + Ey + F = 0

where the coefficients A, B, C, D, E, F are evaluated in terms of the focal coordinates and the dimensions of the major and minor axes of the ellipse.

Midpoint ellipse algorithm

Ellipse function fellipse(x, y) = r2y x2 + r2x y2 – r2x r2y

 < 0, if (x,y) is inside the ellipse boundary
fellipse(x, y) = 0, if (x,y) is on the ellipse boundary

 > 0, if (x,y) is outside the ellipse boundary

 y

 ry 1 slope = -1

 2

 rx x

 The ellipse slope is dy/dx = - 2r2yx / 2r2xy

Over region 1

p1k
= fellipse(xk + 1, yk – ½)

= r2y (xk + 1)2 + r2x (yk – ½)2 – r2x r2y
If p1k < 0, the midpoint is inside the ellipse and the pixel on scan line yk is closer to the ellipse boundary.

Otherwise, the mid-position is outside or on the ellipse boundary, and we select the pixel on scan line yk – 1.

p1k+1
= fellipse(xk+1 + 1, yk+1 – ½)

= r2y [(xk + 1) +1]2 + r2x (yk+1 – ½)2 – r2x r2y
or

p1k+1 = p1k + 2r2y(xk + 1) + r2y

 + r2x [(yk+1 – ½)2 - (yk – ½)2]
where yk+1 is either yk or yk – 1, depending on the sign of p1k.

 2r2y xk+1 + r2y,

if p1k < 0
increment =
 2r2y xk+1 + r2y - 2r2x yk+1 if p1k (0

In region 1, the initial value at the start position (x0, y0) = (0, ry) is

p10 = fellipse(1, ry – ½)

= r2y + r2x (ry – ½)2 – r2x r2y
or

p10 = r2y – r2x r2y + 1/4r2x
Over region 2

p2k
= fellipse(xk + ½, yk – 1)

= r2y (xk + ½)2 + r2x (yk – 1)2 – r2x r2y
If p2k > 0, the mid-position is outside the ellipse boundary, and we select the pixel at xk.

Otherwise, the midpoint is inside or on the ellipse boundary, and we select the pixel position xk+1.

p2k+1
= fellipse(xk+1 + ½, yk+1 – 1)

= r2y (xk+1 + ½)2 + r2x [(yk – 1) – 1]2 – r2x r2y
or

p2k+1 = p2k – 2r2x(yk – 1) + r2x

 + r2y [(xk+1 + ½)2 - (xk + ½)2]

where xk+1 is either xk or xk + 1, depending on the sign of p2k.

In region 2, the initial position (x0, y0) is taken as the last position selected in region 1 and

p20 = fellipse(x0 + ½, y0 - 1)

= r2y(x0 + ½)2 + r2x (y0 – 1)2 – r2x r2y
To simplify the calculation of p20, select pixel positions in counter-clockwise order starting at (rx, 0). Unit steps would then be taken in the positive y direction up to the last position selected in region 1.

Midpoint Ellipse Algorithm

1. Input rx, ry, and ellipse center (xc, yc), and obtain the first point on an ellipse centered on the origin as (x0, y0) = (0, ry).

2. Calculate the initial value of the decision parameter in region 1 as

p10 = r2y – r2x ry + 1/4r2x.

3. At each xk position in region 1, starting at k= 0, perform the following test: If p1k<0, the next point along the ellipse centered on (0, 0) is (xk+1, yk) and

p1k+1 = p1k + 2r2y xk+1 + r2y

Otherwise, the next point along the circle is (xk + 1, yk – 1) and

p1k+1 = p1k + 2r2y xk+1 – 2r2x yk+1 + r2y

 with
2r2y xk+1 = 2r2y xk + 2r2y,

2r2x yk+1 = 2r2x yk + 2r2x
4. Calculate the initial value of the decision parameter in region 2 using the last point (x0, y0) calculated in region 1 as

p20 = r2y(x0 + ½)2 + r2x (y0 – 1)2 – r2x r2y

5. At each yk position in region 2, starting at k= 0, perform the following test: If p2k>0, the next point along the ellipse centered on (0, 0) is (xk, yk - 1) and

p2k+1 = p2k + 2r2y yk+1 + r2x

Otherwise, the next point along the circle is (xk + 1, yk – 1) and

p2k+1 = p2k + 2r2y xk+1 – 2r2x yk+1 + r2x

 with
2r2y xk+1 = 2r2y xk + 2r2y,

2r2x yk+1 = 2r2x yk + 2r2x
7. Determine symmetry points in the other three quadrants.

8. Move each calculated pixel position (x, y) onto the elliptical path centered on (xc, yc) and plot the coordinate values:

x = x + xc, y = y + yc.

9. Repeat the steps for region 1 until 2r2yx(2r2xy.

Ellipsemidpoint (int xcenter, ycenter, rx, ry) {

int p, px, py, x, y, rx2, ry2, tworx2, twory2;

ry2 = ry * ry;

rx2 = rx * rx;

twory2 = 2 * ry2;

tworx2 = 2 * rx2;

// region1

x = 0;

y = ry;

plotpoints;

p = round(ry2 – rx2 * ry + (0.25 * rx2));

px = 0;

py = tworx2 * y;

while (px < py)
{

x = x + 1;

px = px + twory2;

if (p >= 0){

y = y – 1;

py = py – tworx2;

}

if (p < 0)

p = p + ry2 + px;

else

p = p + ry2 + px – py;

plotpoints;

}

// region 2

p = round (ry2 * (x + 0.5) * (x + 0.5) +

rx2 * (y – 1) * (y – 1) – rx2 * ry2);

while (y > 0){

y = y – 1;

py = py – tworx2;

if (p <= 0){

x = x + 1;

px = px + twory2;

}

if (p > 0)

p = p + rx2 – py;

else

p = p + rx2 – py + px;

plotpoints;

}

}

plotpoints {

setPixel(xcenter + x, ycenter + y, 1);

setPixel(xcenter – x, ycenter + y, 1);

setPixel(xcenter + x, ycenter – y, 1);

setPixel(xcenter – x, ycenter – y, 1);

}

Character Generation

Along with lines and points, strings of characters are often displayed to label and annotate drawings and to give instructions and information to the user.

Characters are almost always built into the graphics display device, usually as hardware but sometimes through software.

They are two primary methods for character generation.

Stroke method

Creates characters out of a series of line segments, like strokes of a pen.

Dot-matrix/bitmap method

Characters are represented by an array of dots.

An array of 5 dots wide and 7 dots high is often used, but 7 x 9 and 9 x 13 arrays are also found.
High-resolution devices may use character arrays that are over 100 pixels on a side.
This array is like a small frame buffer, just big enough to hold a character.
The dots are the pixels for this small array.

The size of the dot is fixed.

The stroke method generates variable sized characters, whereas the dot matrix method generates fixed sized characters.

Aliasing and Antialiasing

Many displays allow only two pixel states, on or off.

For these displays, lines may have jagged or stair-step appearance when they step from one row or column to the next.
The lower the resolution, the more apparent the effect. This is one aspect of a phenomenon called Aliasing.

Aliasing produces the defects, which occur when the scene being displayed changes faster or more smoothly than every two pixels.

Displays, which allow setting pixels to grey levels between black and white, provide a means to reduce this effect.

The technique is called antialiasing, and it uses the grey levels to gradually turn off the pixels in one row as it gradually turns on the pixels in the next.

PAGE
30
 Computer Graphics

