Unit II – Graphics Primitives, Transformations

Unit II

Graphics Primitives

Display files

Display processors

Algorithms for polygon generation

Polygon filling algorithms

Normalised Device Coordinates (NDC)

Pattern filling

2D Transformations

Scaling, Rotation, Translation

Homogeneous coordinates

Rotation about an arbitrary point

Reflections

Zooming

Graphics Primitives

Line command

Draw a line from the current position to the point specified.

Absolute line command

The actual coordinates of the final position are specified.

 (x, y)

LINE-ABS (X, Y)

Relative line command

Indicates how far to move from the current position.

LINE-REL (DX, DY) DY

 DX

The actual end point of the segment may be determined from the current position and the relative position.

If (XC, YC) denote the current position, then LINE-REL (DX, DY) = LINE-ABS (XC + DX, YC + DY)
Move Command

For moving the pen/cursor position, without drawing a line.

MOVE-ABS (X, Y)

MOVE-REL (DX, DY)

Program segment using LINE-ABS and MOVE-ABS to draw the picture below:

MOVE-ABS (0, 0.5)

LINE-ABS (1, 0.5)

MOVE-ABS (0.5, 1)

LINE-ABS (0.5, 0)

Program segment using LINE-REL and MOVE-REL to draw the picture below, assuming that the pen is initially positioned at (0, 0):

MOVE-REL (0, 0.5)

LINE- REL (1, 0)

MOVE- REL (-0.5, 0.5)

LINE- REL (0, -1)

Write a routine to draw a square with a side length A centered on the display, using

a) Absolute commands

b) Relative commands

Display files

The display file contains the information necessary to construct the picture.

The information will be in the form of instructions such as draw a line or move the pen. Saving these instructions takes much less storage space than saving the picture itself.

Display file structure

 DF-OP DF-X DF-Y

 (.5, .8)

 1 0.3 0.7 (.3, .7)

 2 0.5 0.8

Each display file command contains two parts, an operation code (opcode), which indicates what kind of command it is (LINE or MOVE), and operands, which are the coordinates of a point (x, y). It is made up of a series of these instructions.

It consists of three separate arrays, one for the operation code (DF-OP), one for the x coordinate (DF-X), and one for the y coordinate (DF-Y).

It must be large enough to hold all the commands needed to create the image.

Display processors

Display file interpreter / Display processor converts the display file instructions into actual images.

It serves as an interface between the graphics program and the display device.

Polygons

The basic surface primitive is polygon (a many-sided figure).

A polygon may be represented as a number of line segments connected end to end to form a closed figure. Alternatively, it may be represented as the points, where the sides of the polygon are connected.

The line segments, which make up the polygon boundary, are called sides or edges.

The end points of the sides are called the polygon vertices.

The simplest polygon is the triangle, having three sides and three vertex points.

Polygons are divided into two classes: convex and concave.

A convex polygon is a polygon such that for any two points inside the polygon, all points on the line segment connecting them are also inside the polygon.

A concave polygon is one, which is not convex.

A triangle is always convex.

Convex polygons

Concave polygons

Inside test

Determines whether or not a point is inside of a polygon.

Construct a line segment between the point in question and a point known to be outside the polygon.

To find a point outside the polygon, pick a point with an x coordinate smaller than the smallest x coordinate of the polygon’s vertices.

Even-odd method

Count how many intersections of the line segment with the polygon boundary occur. If there are an odd number of intersections, then the point in question is inside; an even number indicates that it is outside.

 x

x

x

x

 counts odd

 x

x

counts even

When counting intersection points, one must be cautious when the point of intersection is also the vertex where two sides meet. To handle this case, we must look at the other endpoints of the two segments, which meet at this vertex. If these points lie on the same side of the constructed line, then the point in question counts as an even number of intersections. If they lie on opposite sides of the constructed line, then the point is counted as a single intersection.

Winding-number method

 -1

x

 -1

 1

x

 1

-1

Calculating winding number as the sum of the direction numbers for the sides crossed.

We give each boundary line crossed a direction number, and we sum these direction numbers. The direction number indicates the direction the polygon edge was drawn relative to the line segment we constructed for the test.

Using the winding number to define the interior points can yield different results from the even-odd method when a polygon is allowed to overlap itself.

Even-odd Method

Winding-number Method

Polygon and its display file entry

 (.5, .6)

DF-OP
DF-X
DF-Y

5
0.1
0.1

2
0.3
0.1

2
0.5
0.4

2
0.3
0.6

2
0.1
0.4

2
0.1
0.1

Algorithms for polygon generation

Algorithm for entering Absolute polygon into display file
Polygon-abs (AX, AY, N)

AX, AY
arrays containing the vertices of the polygon

N

number of polygon sides

I

counter for polygon sides

FREE

position of the next free cell

DFSIZE

length of the display file arrays

DF-OP

display file opcode array

DF-X, DF-Y
display file arrays for x and y

if FREE > DFSIZE

print ‘display file full’

return

else

{

//enter the polygon instruction

DF-OP[FREE] = N;

DF-X[FREE] = AX[N];

DF-Y[FREE] = AY[N];

FREE = FREE + 1;

//enter the instructions for the sides

for I = 1 to N do

{

DF-OP[FREE] = 2;

DF-X[FREE] = AX[i];

DF-Y[FREE] = AY[i];

FREE = FREE + 1;

}

return;

}

Polygon filling algorithms

Flood fill method

First draw the edges of the polygon in a blank frame buffer. Then starting with some ‘seed’ point known to be inside the polygon, set the interior style and examine the neighbouring pixels. Continue to set the pixel values in an increasing area until the boundary pixels.

Colour flows from the seed pixel until reaching the polygon boundary, like water flooding the interior of a container.

It will work with any closed shape in the frame buffer, no matter how that shape originated.

Inside test method

Draw solid polygons by considering every pixel on the screen, applying the inside test, and setting those pixels, which satisfies it.

Many pixels can be immediately eliminated by comparing them with the maximum and minimum boundary points. Consider only those pixels, which lie within the smallest rectangle, which contains the polygon.

Scan line algorithm

Find the largest and smallest y values of the polygon, consider only points, which lie between them. Start with the largest y value and work down, scanning from left to right. The constructed test lines will be the horizontal lines at the current y scanning value.

 Filling along scan lines

Consider only the polygon sides, which intersect the scan line.

Consider only these sides

 Scan line

It will be easier to identify, which polygon sides should be tested, if the sides are sorted in order of their maximum y value.

Each time we step down to a lower y value, examine the sides being considered, in order to determine whether we have passed their lower endpoints. If we have stepped past the lowest y value of a side, it may be removed from the set of sides being considered. Now for each y value we know exactly which polygon sides can be crossed.

Remove this side from consideration

Consider this side

The polygon breaks the scan line into pieces.

Compute the x values for all intersections of polygon sides with a given horizontal line, and then sort these x values. The smallest x value will be the left polygon boundary. At this point the polygon begins. The next x value indicates where the polygon ends. Therefore, a line segment drawn between these values will fill in this portion of the polygon. Pair up the sorted x values in this manner for passage to the line-drawing routine.

In summary, an algorithm for filling a solid polygon should begin by ordering the polygon sides on the largest y value. It should begin with the largest y value and scan down the polygon. For each y, it should determine which sides can be intersected and find the x values of these intersection points. The x values are sorted, paired, and passed to a line-drawing routine.

The polygon, which performs the yx scan and fills in the polygon, is called FILL-POLYGON. It begins by retrieving the polygon shape information from the display file and sorting it by largest y value. This is accomplished by means of the LOAD-POLYGON algorithm. The filling in of the polygon is done by repeating the following five steps.

1. Determine if any additional polygon sides should be considered for this scan line. The INCLUDE routine makes this determination.

2. Sort the x co-ordinates of the points where the polygon sides cross the scan line so that they may be easily paired. This is done by the XSORT routine.

3. Turn on the pixels between the polygon edges, which is don by FILL-SCAN.

4. The current scan line is determined.

5. The UPDATE-X-VALUES routine determines the points of intersection of the polygon with this new scan line, and removes from consideration any edges, which have been passed.

These steps are repeated until all polygon edges have been passed by the scanning process.

FILL-POLYGON (INDEX)

INDEX
display file index of the instruction

YMAX
array of upper y co-ordinates for polygon sides

SCAN-DECREMENT

size of a scan-line decrement

EDGES
number of polygon sides considered

SCAN

y value of the scan line

START-EDGE, END-EDGE

indicates which polygon sides are crossed by the scan line

{

load global arrays with the polygon vertex information

LOAD-POLYGON (INDEX, EDGES);

are there enough sides to consider

if edges < 2 return;

set scan line

SCAN=YMAX[1];

initialise starting and ending index values for sides considered

START-EDGE=1:

END-EDGE=1;

fill in polygon

pick up any new sides to be included in this scan

INCLUDE(END-EDGE, EDGES, SCAN);

repeat the filling until all sides have been passed

WHILE END-EDGE <> START-EDGE

{

 make sure the x values are in order

 XSORT(START-EDGE, END-EDGE–1);

 fill in the scan line

 FILL-SCAN(END-EDGE,START-EDGE, SCAN);

 next scan line

 SCAN=SCAN – SCAN-DECREMENT;

 revise x values

 UPDATE-X-VALUES(END-EDGE–1,

START-EDGE, SCAN);

 and see if any new edge should be considered

 INCLUDE(END-EDGE, EDGES,SCAN);

}

RETURN;

}

LOAD-POLYGON(I, EDGES)

Routine retrieve polygon side information from the display file. Positions are converted to actual screen coordinates
I

 display file index of the instruction

EDGES
 returns the number of sides stored

WIDTH-START, HEIGHT-START

 starting index of the screen

WIDTH width in pixels of the screen

HEIGHT height in pixels of the screen

X1, Y1, X2, Y2

 edge endpoints in actual device coordinates

I1

 steps through the display file

K

 steps through the polygon sides

DUMMY dummy argument

SIDES
 number of sides of the polygon

{

set starting point for a side

GET-POINT(I, SIDES, X1, Y1);

X1=X1* WIDTH + WIDTH-START + 0.5;

adjust y coordinate to nearest scan line

Y1=INT(Y1*HEIGHT+HEIGHT-START+0.5);

get index of first side command

I1=I + 1;

initialize an index for storing side data

EDGES=1;

loop to get information about each side

FOR K = 1 TO SIDES DO

{

 get next vertex

 GET-POINT(I1,DUMMY,X2,Y2);

 X2=X2*WIDTH+WIDTH-START+0.5;

 Y2=INT(Y2*HEIGHT+HEIGHT-START+0.5);

 see if horizontal line

 IF (Y1=Y2)

X1=X2;

 ELSE

 {

 save data about side in order of largest y

 POLY-INSERT(EDGES,X1,Y1,X2,Y2);

 increment index for side data storage

 EDGES=EDGES + 1;

 old point is reset

 Y1=Y2;

 X1=X2;

 }

 I1=I1+1;

}

set EDGES to be a count of the edges stored

EDGES=EDGES - 1;

RETURN;

}

POLY-INSERT(J,X1,Y1,X2,Y2)

ordered insertion of polygon edge information

J
insertion index

X1,Y1,X2,Y2
end points of the polygon side

YMAX,YMIN,XA,DX

arrays for storage of polygon edge information

SCAN-DECREMENT
step between filled scan lines
J1
step for the stored edges

YM maximum y value of the new edge

{

insertion sort into global arrays on maximum y

J1 = J;

find the largest y

YM = MAX(Y1, Y2);

find correct insertion point, moving items out of the way as we go

WHILE J1<>1 AND YMAX(J1–1)<YM

{

 move up the insertion slot

 YMAX[J1] = YMAX[J1–1];

 YMIN[J1] = YMIN[J1–1];

 XA[J1] = XA[J1–1];

 DX[J1] = DX[J1–1];

 J1 = J1–1;

 }

 insert information about side

YMAX[J1]=YM;

DX[J1]=((INT(X2)–INT(X1))/(Y2–Y1))

*(- SCAN-DECREMENT);

see which end is on top

IF (Y1 > Y2)

{

YMIN[J1] = Y2;

XA[J1] = INT(X1);

}

ELSE

{

YMIN[J1] = Y1;

XA[J1] = INT(X2);

}

RETURN;

}

INCLUDE(END-EDGE, FINAL-EDGE, SCAN)

include any edges newly intersected by the scan line

END-EDGE
index of the side being considered for inclusion

FINAL-EDGE
index of last side

SCAN

position of current scan line

YMAX, XA, DX arrays of edge information

SCAN-DECREMENT

size of a scan line decrement

{

WHILE (END-EDGE(FINAL-EDGE AND

YMAX[END-EDGE](SCAN)

include a new edge

END-EDGE = END-EDGE + 1;

RETURN;

}

XSORT(START-EDGE, LAST-EDGE)

START-EDGE
index of the first of the edges considered

LAST-EDGE
index of the last edge whose order is to be checked

YMIN, XA, DX arrays of edge information

K, L
steps for edges

T

temporary storage for the exchange

{

FOR K=START-EDGE TO LAST-EDGE

{

L = K;

WHILE (L>START-EDGE AND

XA[L]<XA[L–1])

{

T = YMIN[L];

YMIN[L] = YMIN[L–1];

YMIN[L–1] = T;

T = XA[L];

XA[L] = XA[L–1];

XA[L–1] = T;

T = DX[L];

DX[L] = DX[L–1];

DX[L–1] = T;

L = L–1;

}

}

RETURN;

}

FILL-SCAN(END-EDGE,START-EDGE,SCAN)

fill in the scan line

START-EDGE, END-EDGE

indicates which edges are crossed by the scan line

SCAN
position of the scan line

XA

array of edge intersection positions

NX

number of line segments to be drawn

J

steps the edges

K

steps the line segments

{

NX = (END-EDGE – START-EDGE)/2;

J = START-EDGE;

FOR K = 1 TO NX DO

{

FILLIN(XA[J], XA[J+1],SCAN);

J = J+2;

};

RETURN;

}

FILLIN(X1, X2, Y)

Fills in scan line Y from X1 to X2

X1, X2
end positions of the scan line to be filled

Y

scan line to be filled

FILLCHR

intensity value to be used for the polygon

FRAME two dimensional frame buffer array

X

step across the scan line

{

IF (X1 = X2)
RETURN;

FOR X = X1 TO X2 DO

FRAME[X, Y] = FILLCHR;

RETURN;

}

UPDATE-X-VALUES(LAST-EDGE,START-EDGE,SCAN)

update points of intersection between edges and the scan line

START-EDGE, LAST-EDGE

Limits of current edge list

SCAN
current scan line

XA, DX, YMIN
arrays of edge information

K1
index of edge being considered for update

K2
index of where to store the updated edge

{

K2 = LAST-EDGE;

FOR K1 = LAST-EDGE TO START-EDGE DO

{

check each edge

IF YMIN[K1]<SCAN

{

the edge is still active to update its x values

XA[K1] = XA[K1] + DX[K1];

IF K1 <> K2

{

YMIN[K2] = YMIN[K1];

DX[K2] = DX[K1];

};

decrement K2 so the edge won’t get overwritten

K2 = K2 – 1;

};

};

START-EDGE = K2 + 1;

RETURN;

}

Normalised Device Coordinates (NDC)

Different display devices may have different screen sizes as measured in pixels.

The device independent units are called the normalised device coordinates.

In these units, the screen measures 1 unit wide and 1 unit high.

The lower-left corner of the screen is the origin, and the upper-right corner is the point (1, 1). The point (0.5, 0.5) is the center of the screen no matter what the physical dimensions or resolution of the actual display device may be.

 (0, 1) (1, 1)

 (0, 0) (1, 0)

The interpreter uses a simple linear formula to convert from the normalised device coordinates to the actual device coordinates.

xs = WIDTH * xn + WIDTH-START

ys = HEIGHT * yn + HEIGHT-START

Polygon fill styles might be patterns.

Pattern filling

Grid of pixel values which is replicated like tiles to cover the polygon area.

Easily implemented on raster display devices.

Fixed or registered to the imaging surface so that if two polygons are filled with the pattern and placed side by side, the pattern will match at the boundary.

Imagine taking the pattern and replicating it to cover the entire imaging surface, and then erasing it anywhere outside of the polygons, which use it.

 A pattern

Replicated across the display

 Shown only with

 polygon boundaries

Examples of 4 x 4 patterns

2D Transformations

Allows to uniformly altering the entire picture.

Computer graphics images are generated from a series of line segments, which are represented by the coordinates of their endpoints.

Certain changes in an image can be easily made by performing mathematical operations on these coordinates.

Scaling

Enlarging or reducing the picture in x and y coordinates independently.

Scaling transformation matrix

S = Sx
0

0
Sy
Sx
Scale factor in x coordinate

Sy
Scale factor in y coordinate

When we scale the image, every point except the origin changes.

The size and position of the image will change.

Sx > 1
Shifts the image to the right

Image enlarges in x coordinate

Sx < 1
Shifts the image to the left

Image reduces in x coordinate

Sx = 1
Same (as it is) in x coordinate

Sy > 1
Shifts the image to up

Image enlarges in y coordinate

Sy < 1
Shifts the image to down

Image reduces in y coordinate

Sy = 1
Same (as it is) in y coordinate

Example
Sx = 1.5

Sy = 0.5

(x2 y2)
= (x1 y1) 1.5 0

0 0.5

= (1.5x1 0.5y1)

 Before

 After

Write 2 x 2 transformation matrix for the following scaling transformations

1. The entire picture three times as large.

2. The x direction four times as large, the y direction unchanged.

3. The x direction reduced to three-fourths the original, y direction increased by a factor of seven-fifths.

4. The y lengths reduced to two-thirds their original value, the x lengths unchanged.

Rotation

Draw a line segment from the origin at the angle (counter clockwise from the x-axis.

y

 (x, y)

 (

(0, 0)

 x

Rotating the point (1, 0) counter clockwise by an angle (, becomes (cos(, sin().

y

 sin(

 (cos(, sin()

 (

(0, 0)

 cos((1, 0)
 x

So,
[cos(sin(] =
1 0
 a b = a b

 c d

Rotating the point (0, 1) counter clockwise by an angle (, becomes (-sin(, cos().

y

 1

 cos(

 (

 -sin(

(0, 0)

x

So,
[-sin(cos(] =
0 1
 a b = c d

 c d

The transformation matrix for a counter clockwise rotation of (about the origin is

R = cos(
sin(

 -sin(
cos(
Example Rotate the point (2, 3) counter clockwise by an angle of (/6 radians.

R = cos(/6
sin(/6

 -sin(/6
cos(/6

 0.866
0.5

 -0.5

0.866

The rotated point is

2 3 0.866
 0.5

 -0.5
 0.866

= 0.232 3.598

y

(0.232, 3.598)

 (2, 3)

(0, 0)

 x

Write a 2 x 2 transformation matrix for the following rotations about the origin.

1. Counter clockwise by (.

2. Clockwise by 5(/4.

Translation
Moving the image is called Translation.

To move the image left/right in x-direction

x2 = x1 (tx
To move the image up/down in y-direction

y2 = y1 (ty
tx > 0
Shifts the image to the right in x-direction

tx < 0
Shifts the image to the left in x-direction

tx = 0
Same position in x-direction

ty > 0
Shifts the image up in y-direction

ty < 0
Shifts the image down in y-direction

ty = 0
Same position in y-direction

Homogeneous coordinates

Translation cannot be represented by 2 x 2 matrix form.

In homogeneous coordinates, we use 3 x 3 matrices instead of 2 x 2, introducing a dummy coordinate w; points are specified by three numbers instead of two.

A coordinate point (x, y) will be represented by the triple (xw, yw, w).

In two dimensions, w = 1 for simplicity.

In homogeneous coordinates,

Scaling transformation matrix S = Sx 0 0

 0
 Sy 0

 0 0 1

Rotation transformation matrix R = cos(sin(0

(Counter clockwise) -sin(cos(0

 0 0 1

Translation transformation matrix T = 1 0 0

 0 1 0

 tx ty 1

Give a 3 x 3 homogeneous transformation matrix for the following translations

1. Shift the image to the right 3 units.

2. Move the image down ½ unit and right 1 unit.

3. Move the image down 2/3 unit and left 4 units.

Give a 3 x 3 homogeneous transformation matrix for the following scaling transformations

4. The entire picture three times as large.

5. The x direction four times as large, the y direction unchanged.

6. The x direction reduced to three-fourths the original, y direction increased by a factor of seven-fifths.

7. The y lengths reduced to two-thirds their original value, the x lengths unchanged.

Give a 3 x 3 homogeneous transformation matrix for the following rotations

8. Counter clockwise by (.

9. Clockwise by 5(/4.

Give a single 3 x 3 homogeneous transformation matrix, which will have the same effect as the following transformation sequences:
1. Scale the image to be twice as large and then translate it 1 unit to the left.

2. Scale the x direction to be one-half as large and then rotate counter clockwise by (/2 about the origin.

3. Rotate counter clockwise about the origin by (/2 and then scale the x direction to be one-half as large.

4. Translate down ½ unit, right ½ unit, and then rotate counter clockwise by (/4.

5. Scale the y coordinate to make the image twice as tall, shift it down 1 unit, and then rotate clockwise by (/6.

Rotation about an arbitrary point

Determine the transformation matrix for a counter clockwise rotation about an arbitrary point (xc, yc).

 ((x, y)

 (xc, yc)

 (

 Translate(T1)

Rotate(R)
 Translate back(T2)

Translate the point (xc, yc) to the origin, rotate about the origin, and then translate the center of rotation back where it belongs.

 T
= T1RT2

= 1 0 0 cos(sin(0 1 0 0

 0 1 0 -sin(cos(0 0 1 0

 -xc -yc 1 0 0 1 xc yc 1

= 1 0 0 cos(sin(0

 0 1 0 -sin(cos(0

 -xc -yc 1 xc yc 1

= cos(

 sin(

 0

 -sin(

 cos(

 0

 -xccos(+ycsin(+xc -xcsin(-yccos(+yc 1

Reflections

Reflection in the y-axis

 (x y) -1 0 = (-x y)

 0 1

Before

After

Reflection in the x-axis

 (x y) 1 0 = (x -y)

 0 -1

Before

After
Reflection in the origin

 (x y) -1 0 = (-x -y)

 0 -1

Before

After
Reflection in the line y = x

 (x y) 0 1 = (y x)

 1 0

+

+

Before

After
Reflection in the line y = -x

 (x y) 0 -1 = (-y -x)

 -1 0

+

+

Before

After
The reflections in the lines y = x and y = -x can be done by a scale followed by a rotation.

Shear transformations

Cause the image to slant.

The y shear preserves all the x-coordinate values but shifts the y value. The amount of change in the y value depends upon the x position. This causes horizontal lines to transform into lines, which slope up or down.

 Before

 After

 (x y) 1 a = (x ax+y)

 0 1

The x shear preserves all the y-coordinate values but shifts the x value. The amount of change in the x value depends upon the y position. This causes vertical lines to tilt right or left.

 Before

 After

 (x y) 1 0 = (x+by y)

 b 1

It is possible to form the shear transformations out of sequences of rotations and scales, although it is much easier to just form the matrix directly. It is also possible to build rotation and some scaling transformations out of shear transformations.

Inverse transformations

Undoing a transformation

a d 0 1 e -d 0

inv
b e 0 = ------- -b a 0

c f 1 ae-bd bf-ce cd-af ae-bd

Inverse Scaling transformation matrix

 Sx 0 0

S-1 = 0 Sy 0

 0 0 1

Inverse Rotation transformation matrix

 cos(sin(0

R-1 = -sin(cos(0

 0 0 1

Inverse Translation transformation matrix

 1 0 0

T-1 = 0 1 0

 tx ty 1

Image transformations

 Scale

 Rotate

Translate

T = S R T

 Sx 0 0 cos(sin(0 1 0 0

 = 0 Sy 0 -sin(cos(0 0 1 0

 0 0 1 0 0 1 tx ty 1

Inverse image transformations

H-1 = (S R T)-1 = T-1 R-1 S-1
Zooming

Changing rapidly from a long shot to a close-up.

PAGE
45
 Computer Graphics

