Unit III – Segments, Windowing & Clipping

Unit III

Segments

The image is decomposed into various sub-images and hence, the display file is divided into segments.

Each segment corresponds to a component of the overall display.

A set of attributes is associated with each segment.

Visibility attribute

A visible segment will be displayed, but an invisible segment will not be shown. By varying the settings of the visibility attribute, we can build a picture out of the selected sub-pictures.

Another attribute associated with each segment is image transformation, which allows the independent scaling, rotating, and translating of each segment.

Segment Tables

SEGMENT

NAME
SEGMENT

START
SEGMENT

SIZE
VISIBILITY
ANGLE
SCALE

X
SCALE

Y
TRANSLATE

X
TRANSLATE

Y

0

1

2

3

Operations on segments

Creating/Opening a segment

create-segment(segment-name)

now-open
segment currently open

free
index of the next free display file cell

segment-start, segment-size, visibility, angle, scale-x, scale-y, translate-x, translate-y

arrays make up the segment table

number-of-segments
size of the segment table

{

 if now-open>0

print ‘segment still open’

 else

 if segment-name<1 or

segment-name>number-of-segments

print ‘invalid segment name’

 else

 if segment-size[segment-name]>0

print ‘segment already exists’

 else

 {

segment-start[segment-name] = free;

segment-size[segment-name] = 0;

visibility[segment-name] = visibility[0];

angle[segment-name] = angle[0];

scale-x[segment-name] = scale-x[0];

scale-y[segment-name] = scale-y[0];

translate-x[segment-name] = translate-x[0];

translate-y[segment-name] = translate-y[0];

now-open = segment-name;

 }

 return;

}

close-segment

//to close a segment

now-open
name of the currently open segment

free

index of the next free display file cell

segment-start, segment-size

start and size of the segments

{

 if now-open = 0
print ‘no segment open’

 else

 {

delete-segment(0);

segment-start[0] = free;

segment-size[0] = 0;

now-open = 0;

 }

 return;

}

delete-segment(segment-name)

segment-name
segment name to be deleted

now-open

currently open segment

free

 index of the next free display file cell

df-op,df-x,df-y
display file arrays

segment-start, segment-size, visibility

segment table arrays

number-of-segments
size of the segment table

get

location of an instruction to be moved

put
location to which an instruction should be moved

size

size of the deleted segment

I

step for segment table

{

 if segment-name<0 or

segment-name>number-of-segments

print ‘invalid segment-name’

 else

 if segment-name = now-open and

segment-name <> 0

print ‘segment still open’

 else

 if segment-size[segment-name] = 0

print ‘no segment’

 else

 {

put = segment-start[segment-name];

size = segment-size[segment-name];

get = put + size;

shift the display file elements

while get<free

{

df-op[put] = df-op[get];

df-x[put] = df-x[get];

df-y[put] = df-y[get];

put = put + 1;

get = get + 1;

}

recover the deleted storage

free = put;

update the segment table

for I = 0 to number-of-segments do

if segment-start[I]>segment-start[segment-name]

 segment-start[I] = segment-start[I] – size;

segment-size[segment-name] = 0;

if visibility[segment-name]

new-frame;

return;

 }

}

delete-all-segments

now-open
segment currently open

free

index of the next available display file cell

segment-size
segment size array

segment-start
segment starting index array

number-of-segments
size of the segment table

I

step for segment table

{

for I = 0 to number-of-segments do

{

segment-start[I] = 1;

segment-size[I] = 0;

}

now-open = 0;

free = 1;

new-frame;

return;

}

rename-segment(segment-name-old,

segment-name-new)

segment-name-old

old name of segment

segment-name-new

new name of segment

segment-start, segment-size, visibility, angle, scale-x, scale-y, translate-x, translate-y

segment table arrays

number-of-segments
size of the segment table

{

 if segment-name-old<1 or

segment-name-new<1 or

segment-name-old>number-of-segments or

segment-name-new>number-of-segments

print ‘ invalid segment name’

 else

 if segment-name-old = now-open or

segment-name-new = now-open

print ‘ segment still open’

 else

 if segment-size[segment-name-new]<>0

print ‘segment already exists’

 else

 {

copy the old segment table entry into the new position

segment-start[segment-name-new]

= segment-start[segment-name-old];

segment-size[segment-name-new]

= segment-size[segment-name-old];

visibility[segment-name-new]

= visibility[segment-name-old];

angle[segment-name-new]

= angle[segment-name-old];

scale-x[segment-name-new]

= scale-x[segment-name-old];

scale-y[segment-name-new]

= scale-y[segment-name-old];

translate-x[segment-name-new]

= translate-x[segment-name-old];

translate-y[segment-name-new]

= translate-y[segment-name-old];

delete the old segment

segment-size[segment-name-old] = 0;

 }

 return;

}

Data structures for segments and display files

Linked list data structure

In a linked list, the instructions are not stored in order. The link or pointer field gives the location of the next instruction.

 OP X Y LINK

 OP X Y LINK

 1

 1

 2 2 .1 .5 5

 2 2 .1 .5

 3 1 .1 .1 2
 Start 3 1 .1 .1

 4

 4

 5 2 .5 .5 9

 5 2 .5 .5

 6

 6

 7 2 .1 .5 0

 7 2 .1 .5 /

 8

 8

 9 2 .7 .5 7

 9 2 .7 .5

 10

 10

Start

 1 .1 .1
 2 .1 .5 2 .5 .5 2 .7 .5 2 .1 .5 /

Paging scheme

Display file is organised into a number of small arrays called pages. The pages are linked to form a linked list of pages. Each segment begins at the beginning of a page. If a segment ends at some point other than a page boundary, then the remainder of that page is not used. When the end of a page is reached, a link is followed to find the next page.

 /

Windowing and Clipping

The method for selecting and enlarging portions of a drawing is called Windowing.

The technique for not showing that part of the drawing, which one is not interested in, is called Clipping.

Object space

Physical units of length.

 --

 12M

 (.25, .5)

 (.25, .2) (.5, .2)

 --

 | 12M |

 Object Space

Image Space

Image/Screen space

Measured in screen coordinates.

Done by scaling transformation.

Window

 Object space

Rectangular box enclosing a portion of the object.

Viewport

 Image space

Rectangular box in a screen space.

Different windows, same viewports

When the window is changed, we see a different part of the object shown at the same position on the display.

Same windows, different viewports

If we change the viewport, we see the same part of the object drawn at a different place on the display.

Viewing transformations

 Translate

 Scale

 Translate

Original object

Translate

Scale

 Translate

1. The object together with its window is translated until the lower-left corner of the window is at the origin.

2. The object and window are scaled until the window has the dimensions of the viewport. This converts object and window into image and viewport.

3. Translate to move the viewport to its correct position on the screen.

 1 0 0 (VXH – VXL)

0

0
1
0
0

 (WXH – WXL)

 0 1 0

 0

(VYH – VYL)
0
0
1
0

 (WYH – WYL)

-WXL -WYL 1

 0 0

1 VXL VYL
1

 (VXH – VXL)

0

0

(WXH – WXL)

0

 (VYH – VYL)

0

(WYH – WYL)

 VXL – WXL(VXH – VXL)

 VXL – WXL(VXH – VXL)
1

 (WXH – WXL)

(WXH – WXL)
Clipping

Process in which we cut off the lines, which are outside the window so that only the lines within the window are displayed.

In Clipping, we examine each line of the display to determine whether or not it is completely within the window, lies completely outside the window, or crosses a window boundary.

If it is inside, the line is displayed; if it is outside, nothing is drawn. If it crosses the boundary, we must determine the point of intersection and draw only the portion, which lies inside.

 Before

 After

Different graphic elements may require different clipping techniques. A character for example, may be either entirely included or omitted depending on whether or not its center lies within the window. This technique will not work for lines, and some methods used for lines will not work for Polygons.

COHEN-SUTHERLAND OUTCODE Algorithm

A popular method for clipping lines is the Cohen-Sutherland Outcode algorithm. The algorithm quickly removes lines which lie entirely to one side of the clipping region (both endpoints above, or below, or right, or left).

The algorithm makes clever use of bit operations (outcodes) to perform this test efficiently. Segment end points are given 4-bit binary codes.

The high-order bit is set to ‘1’ if the point is above the window, the next bit is set to ‘1’ if the point is below the window; the third and fourth bits indicate right and left of the window, respectively. The lines which form the window boundary divide the plane into nine regions with the outcodes as shown below.

Outcodes for the plane

 1001 1000
 1010

 0001

 0000

 0010

 0101

 0100

 0110

If the line is entirely within the window, then both endpoints will have Outcode 0000. Segments with this property are accepted (segment ST in figure).

If the line segment lies entirely on one side of the window (say entirely above it), then both endpoints will have a ‘1’ in the outcode bit position for that side (the first bit will be 1 for both endpoints).

 I

 E

 G

 B K

L

N

 S

 M

F

 A

 T

 J

 D

 C

We can check to see if the line is entirely on one side of the window by taking the logical AND of the outcodes for the two endpoints. If the result of result of the AND operation is nonzero, then the line segment may be rejected.

Thus one test decides if the line segment is entirely above, or entirely below, or entirely to the right, or entirely to the left of the window. For example, segments AB and CD in fig would be quickly removed.

The difficult case occurs when a line crosses one or more of the lines contain the clipping boundary (such as segments EF and IJ).

For these cases, the point of intersection between the line segment and clipping boundary lines may be used to break up the line segment. The resulting pieces may be tested for acceptance or rejection.

Segment EF may be broken into EG and GF, where EG lies above and GF lies to the right, so both would be rejected. Segment IJ might be divided into IK and KJ. IK can be rejected because it lies to the left, but KJ must be further divided. Forming KL and LJ, we see that KL may be rejected as lying above but LJ must further be divided into LM and MJ. LM is contained and accepted, while MJ is to the right and rejected.

Brief outline of the Algorithm

1. Compute the outcodes for the two endpoints (p1 and p2) of the segment.

2. Next, we enter a loop. Within the loop we check to see if both outcodes are zero; if so, we enter the segment into the display file, exit the loop, and return.
3. If the outcodes are not both zero, then we perform the logical AND function and check for a nonzero result. If this test is nonzero, then we reject the line, exit the loop and return.

4. If neither of these tests is satisfied we must subdivide the line segment and repeat the loop.

5. If the outcode for p1 is zero, exchange the points p1 and p2 and also their outcodes.

6. Find a nonzero bit in the outcode of p1. If it is the higher-order bit, then find the intersection of the line with the top boundary of the window. If it is the next bit position, then subdivide along bottom boundary. The other two bits indicate that the right and left boundaries should be used.

7. Replace the point p1 with the intersection point and calculate its outcode.

8. Repeat the loop.

The SUTHERLAND –HODGMAN Algorithm

The Cohen-Sutherland algorithm works well for lines, but we would like a method, which may be used with polygon as well.

Our clipping routines will be based on a method discovered by Sutherland and Hodgman. The method unbundles the clipping test to clip against each of the four boundaries individually.

The idea behind the algorithm is that we can easily clip a line segment against any one of the window boundaries. We can then perform the complete clipping by clipping against each of the four boundaries in turn.

To clip a boundary, we step through the drawing instruction. As we consider each new endpoint, we decide whether it belongs to a line, which crosses the boundary. If it does, the point of intersection is determined and passed onto the next routine.

Then each point is examined to see whether it lies within the boundary. If so, it is also passed to the next routine. In this procedure, all line segment endpoints lying within the boundary and all points where lines intersect the boundary are passed on, while points lying outside the boundary are filtered out.

 Filter out

 these points

 Pass these

 points

Clipping against all four window boundaries

 Clip left

 Clip right

 Clip bottom

 Clip top

We can think of the process as clipping the entire figure against each window boundary before moving on to the next boundary. However since our clipping process steps sequentially through the figure drawing instruction, it is possible to begin clipping on a second boundary before the clipping of the entire figure against the first boundary is completed. In fact, each point may be run through all through all four clipping routines and entered into the display file before the next point is considered.

Algorithm for clipping a figure against each of the four window boundaries follows the same outline. They first check to see if the new point is the first point of a polygon, and if so, they save it.

They examine the new point and the last point to see whether the line segment with these endpoints crosses the boundary. The Algorithms are called for each new point.

We start with the pen at some location and ask to move it to some new position. The clipping routine examines this path to see if it encounters the clipping boundary. If it does, the pen is moved only to the boundary; a new command, corresponding to the clipped point, is entered.

If the side is drawn from outside the window to inside the window or the command is foe character drawing, then we introduce a MOVE command; otherwise the command is the same as the original.

This means that if our figure passes outside of the window boundary, the pen will move along the boundary to the point where the figure reenteres the window region.

The algorithms update the last point to be the current point and check the current point to see whether it is inside the window. If so, this instruction is also entered.

When we say a command is “entered”, we mean that it is passed on to the next routine. For the first three clipping algorithms, the next routine is the algorithm for clipping along the next boundary. The last clipping algorithm actually enters commands into the display file.

For polygons, when all sides are considered, we need to make sure that the polygon is closed. The closing problem is illustrated in the figure.

Clipping all sides …
 … gives unclosed polygon

 Correct

Clipping against the left boundary results in a starting point above the bottom boundary and an ending point, which is below this boundary. Now clipping this sequence of points against the bottom boundary results in a polygon, which is not closed because there is no command to move across the boundary, and intersection points are only calculated when the boundary is crossed. To fix this problem we require each clipping stage to close its version of the polygon.

CLIP-LEFT receives the original polygon.

It is clipped and closed to send

these points to CLIP-RIGHT,

which forwards then to CLIP-BOTTOM.
Clipping and closing yields this

polygon for CLIP-TOP,

which is then saved.

The clipping process

Generalised clipping

The polygon clipping routine can be generalised to clip along any line (not just horizontal and vertical boundaries). This form of the algorithm is not limited to clipping along rectangular windows parallel to the axis. Clipping along arbitrary lines means that the window sides may be at any angle, and by recursively calling the clipping algorithm as many times as needed (not just four), the window can have more than four sides. The generalised algorithm in a recursive language can be used to clip along an arbitrary convex polygon.

A window with six clipping boundaries

Multiple windowing

Some systems allow the use of multiple windowing.

A first image is created by one or more window transformations on the object. Then, windows are applied to this first image to create a second image. Further windowing transformations may be done until the desired picture is created. Every application of a window transformation allows the user to slice up a portion of the picture and reposition it on the screen. Thus, multiple windowing gives the user freedom to rearrange components of the picture. The same effect may be achieved by applying a number of single-window transformations to the object.

 Clip right

 Clip bottom

 Clip top

 Clip left

 Viewing transform

PAGE
28
 Computer Graphics

