Unit V – Curves & Surfaces, Raster Graphics Architecture

Unit V

Curves and Surfaces

Generation of curves (DDA algorithm)

 A

 R

 (x0, y0)

The equations for the arc coordinates can be written in terms of an angle parameter A:

x = R cos A + x0

y = R sin A + y0

where (x0 , y0) is the center of curvature

and

 R is the arc radius.

Differentiating changes x by dx and y by dy, if we change A by dA.

dx = – R sin A dA

dy = R cos A dA

but R cos A = x – x0

R sin A = y – y0
· dx = – (y – y0) dA

dy = (x – x0) dA

· x2 = x1 + dx = x1 – (y2 – y0) dA

y2 = y1 + dy = y1 + (x2 – x0) dA

In arc generation algorithm, start with the center of curvature (x0, y0), the total angle of the arc to be drawn A, a point at which the arc drawing should begin (x, y), and the intensity at which to set the pixels.

The step size of the parameter dA should be small enough not to leave gaps in the arc and small enough to give a good approximation to a circle.

ARCDDA (X0, Y0, A, X, Y, INTENSITY)

X0, Y0

center of curvature

A

arc angle

X, Y

starting point for the arc drawing

FRAME

frame buffer array

XARC, YARC
next point to draw

A-DRAWN

amount of angle currently covered

DA

angle increment

ROUNDOFF
some small number greater than any round-off error

{

 IF (|X – X0| + |Y – Y0| < ROUNDOFF) RETURN;

 A-DRAWN = 0;

 find a suitable angle increment

 DA = MIN(0.01, 1 / (3.2 * (|X – X0| + |Y – Y0|)));

 set the first point of the arc

 XARX = X;

 YARC = Y;

 generate the arc until desired angle is covered

 WHILE A-DRAWN < A DO

 {

find new point

XARC = XARC + (Y0 – YARC) * DA;

YARC = YARC + (XARC – X0) * DA;

A-DRAWN = A-DRAWN + DA;

set the corresponding pixel

FRAME[INT(XARC), INT(YARC)] = INTENSITY;

 }

}

B-splines (Basis-splines)

Generate curve sections, which have continuous slopes so that they fit together smoothly.

Each vertex is associated with a unique basis function.

This allows each vertex to affect the shape f a curve only over a range of parameter values where its associated basis function is non-zero.

Degree of resulting curve can be changed without changing the number of defining polygon vertices.

Given an input set of N+1 control points PI and I varying from 0 to n, points on B-spline curve are defined as:

 N

P(U) = (PIBIK(U), Umin (U (Umax and I (K (N-1

 I=1

where the function BIK is a polynomial of degree k-1 or order K.

Cubic Bezier Curves

 D

 CD

C

 BCD

 BC
 ABCD

 ABC

 B

 AB

 A

Requires four control points, which specify the curve.

The curve begins at the first control point and ends on the fourth.

At the start of the curve, it is tangent to the line connecting the first and second control points.

At the end of the curve, it is tangent to the line connecting the third and fourth control points.

A Bezier curve can be constructed simply by taking midpoints.

Draw the lines connecting the four control points A, B, C, and D.

Determine the midpoints of these segments AB, BC, and CD.

Connect these midpoints with line segments and find their midpoints ABC and BCD.

Finally, connect these two points and find the midpoint ABCD.

The point ABCD is on the Bezier curve. It divides the curve into two sections.

The points A, AB, ABC, and ABCD are the control points for the first section and the points ABCE, BCD, CD, and D are the control points for the second section.

Thus by taking midpoints, find a point on the curve and also split the curve into two pieces complete with control points.

Continue to split the curve into smaller sections until the sections are so short that straight lines can replace them, or even until the sections are no bigger than individual pixels.

Hermite interpolation

Interpolating piecewise cubic polynomial with a specified tangent at each control point.

Can be adjusted locally because each curve section is only dependent on its endpoint constraints.

pk

 P(u) = (x(u), y(u), z(u))

 pk+1
P(u) represents a parametric cubic point for the curve section between control points pk and pk+1.

The boundary conditions that define the Hermite curve section are

P(0)
= pk
P(1)
= pk+1
P`(0)
= Dpk
P`(1)
= Dpk+1
Dpk and Dpk+1 specify the values for the parametric derivatives (slope of the curve) at control points pk and pk+1 respectively.

Useful for some digitizing applications where it may not be too difficult to specify or approximate the curve slopes.

Program to implement curve drawing algorithm to draw Bezier Curve

float bf (int, float);

void fact();

int x[10], y[10], m, s, I, j, k, n, p, q;

float c[10], t, x1, y1, u, b, h;

int gm, gd = DETECT;

main () {

clrscr ();

detectgraph(&gd, &gm);

initgraph(&gd, &gm, “ ”);

printf(“Enter the no. of points \n”);

scanf(“%d”, &n);

for (I = 0; I < n; I++)

scanf(“%d %d”, &x[I], &y[I]);

m = 1000;

fact ();

for (I = 0; I < m; I++) {

b = (float) I;

h = (float) m;

u = b / h;

x1 = 0;

y1 = 0;

for (k = 0; k < n; k++) {

t = bf (k, u);

x1 = x1 + x[k] * t;

y1 = y1 + y[k] * t;

}

p = (int) x1;

q = (int) y1;

putpixel (p, q, 10);

}

}

float bf (int s, float u) {

float e;

e = c[s];

for (j = 1; j <= s; j++)

e = e * u;

for (j = 1; j <= n – k; j++)

e = e * (1 – u);

return (e);

}

void fact () {

for (k = 0; k < n; k++) {

c[k] = 1;

for (j = n – 1; j >= k + 1; j--)

c[k] = c[k] * j;

for (j = n – k – 1; j >= 2; j--)

c[k] = c[k] / j;

}

}

Raster Graphics Architecture

Simple Raster display system

 CPU

Peripheral

 Devices

System Bus

 System Frame Video Monitor

 Memory buffer

 controller

Contains a CPU, system bus, main memory, frame buffer, video controller, and CRT display.

CPU performs all the modelling, transformation, and displays computations, and writes the final image to the frame buffer.

The video controller reads pixel data from the frame buffer in raster-scan order, converts digital pixel values to analog, and drives the display.

If such a system has sufficient frame-buffer memory, has a suitable CRT display, and is given enough time, it can generate and display scenes of virtually unlimited complexity and realism.

Most work in graphics architecture concerns the quest for increased rendering speed.

Display processor system

 CPU

Peripheral

 Devices

System Bus

 Display

 System

 Processor

 memory

 Display

 processor Frame Video Monitor

 Memory buffer

 controller

Introduces a separate graphics processor to perform graphics functions such as scan conversion and raster operations, and a separate frame buffer for image refresh.

There are two processors: general-purpose CPU and the special-purpose display processor and three memory areas: the system memory, the display processor memory, and the frame buffer.

The system memory holds data plus those programs that execute on the CPU: the application program, graphics package, and operating system.

The display processor memory holds data plus the programs that perform scan conversion and raster operations.

The frame buffer contains the displayable image created by the scan conversion and raster operations.

Standard Graphics pipeline

A logical model for the computations needed in a raster-display system.

Various stages of the pipeline can be implemented in either software or hardware.

 Display Modelling
 Trivial Viewing Clip- Division by w Raster-

 traversal transfor- accept Lighting transfor- ping and mapping isation Monitor

 mation /reject mation to viewport

Geometry subsystem

 Back-end

 Subsystem

Front-end subsystem

Display Traversal The first stage of the pipeline is traversal of the display model or database.

This is necessary because the image may change by an arbitrary amount between successive frames.

All the primitives in the database must be fed into the remainder of the display pipeline, along with context information, such as colours and current transformation matrices.

Modelling Transformation In this stage of the pipeline, graphics primitives are transformed from the object coordinate system to the world coordinate system.

This is done by transforming the vertices of each polygon with a single transformation matrix that is the concatenation of the individual modelling transformation matrices.

Trivial Accept / Reject Classification In this stage, primitives are tested to see whether they lie wholly inside or outside the view volume.

To trivially accept or reject a primitive, test each transformed vertex against the six bounding planes of the view volume.

Lighting Depending on the shading algorithm to be applied (constant, Gouraud, or Phong), an illumination model must be evaluated at various locations: once per polygon for constant shading, once per vertex for Gouraud shading, or once per pixel for Phong shading.

Ambient, diffuse and specular illumination models are commonly used in high performance systems.

Viewing Transformation In this stage, primitives in world coordinates are transformed to normalised projection (NPC) coordinates.

This transformation can be performed by multiplying vertices in world coordinates by a single 4 x 4 matrix that combines the perspective transformation and any skewing or non-uniform scaling transformations needed to convert world coordinates to NPC coordinates.

Clipping In this stage, primitives that were not trivially accepted or rejected are clipped to the view volume.

All clipping is performed in homogeneous coordinates.

The number of computations required for clipping depends on how many primitives cross the clipping boundaries, which may change from one frame to the next.

Division by w and Mapping to 3D Viewport Homogeneous points that have had a perspective transformation applied has w values not equal to 1.

To compute true x, y, and z values, divide the x, y, and z components of each homogeneous point by w.

In many systems, vertex x and y coordinates must be mapped from the clipping coordinate system to the coordinate system of the actual 3D viewport. This is a simple scaling and translation operation in x and y that requires 2 multiplications and 2 additions per vertex.

Rasterisation is the process of determining which pixels will provide the best approximation to the desired line.

This stage converts transformed primitives into pixel values, and stores them in a frame buffer.

Multiprocessing / Concurrent processing performs multiple operations concurrently and performs multiple reads and writes to memory concurrently.

There are two basic forms: pipelining and parallelism.

A pipeline processor contains a number of processing elements (PEs) arranged such that the output of one becomes the input of the next, in pipeline fashion.

 PE0
 PE1

PE2

 PEn-1

PEn
The processing elements of a parallel processor are arranged side by side and operate simultaneously on different portions of the data.

 PE0

 PE1

 PE2

 PEn-1

 PEn
Pipeline front-end architecture

Application Program and Display Traversal Some processor must execute the application program that drives the entire graphics system. In addition to feeding the graphics pipeline, this processor generally handles input devices, file I/O, and all interactions with the user.

Geometric transformation stages (modelling transformation and viewing transformation) are highly computing intensive.

Trivial Accept / Reject Classification These tests are straightforward to implement and require little computation and are generally performed by the processor that transforms primitives.

Lighting calculations are straightforward and are floating-point intensive.

Clipping using a Geometric Engine (unwrapping the processing loop into a simple pipeline of identical processors) can be performed either by a single processor that clips each polygon by as many planes as necessary, or by a pipeline of clipping processors, one for each clipping plane.

Division by w and Mapping to 3D Viewport The calculations in this stage are straightforward but require substantial floating-point resources.

Limitations

1. A different algorithm is needed for each stage of the front-end pipeline.

2. Since the rendering algorithm is committed to hardware, it is difficult to add new features.

3. The approach breaks down when a single processor can no longer perform display traversal, and this inevitably occurs at some performance level.

Parallel front-end architecture

The simplest technique is to traverse the database in a single processor and then to distribute primitives to the parallel processors.

The database either can be stored in a single memory system that allows parallel access by multiple processors or can be distributed over multiple processors (a shared memory model), each with its own memory system (a distributed memory model).

Multiprocessor Rasterisation Architecture

The rasterisation (back-end) subsystem creates the final image by scan converting each of these primitives, determining which primitives are visible at each pixel, and shading the pixel accordingly.

PAGE
1
 Computer Graphics

