Unit – II: C++

Unit – II

Structure of a C/C++ program

Processor directives

Data types and declaration

Expressions and operator precedence

Program flow control

Functions

Scope of variables

Default arguments

Dynamic allocation

New and delete operators

Introduction to C++

Extensive version of C language.

Derived from C.

Originally called as C with classes.

Invented in early 1980’s by Bjarne Stroustrup.

General-purpose language (due to its new features).

Object Oriented Programming Language.

Relationship between C and C++

C++

OOP Features

C

Common Features

Features in C but not in C++

Other Features

Differences between C and C++

C is at the machine level while C++ is at the problem domain level.

C

C++

· int fn(); is a function with no
function does not have any

parameters.

parameter.

· All the functions can optionally
All the functions should be

be declared or prototyped.

prototyped, before its use.

· A character constant is

It is not converted.

automatically converted into

its equivalent ASCII.

· main() function can be called
main() function cannot be

within the program like the

called within the program.

invocation of other functions.

· register variables cannot be
register variables can be

addressed.

addressed.

·

stream.h library provides a
very useful alternative to

stdio.h of C.

·

abstract data type mechanism

through class data is implemented. Class is an extension of struct in C.

· weekly typed unsafe language.
Strongly typed.

· C array is a pointer based and
multi-dimensional, dynamic

one-dimensional without

and bounds-checked arrays are

bounds checking.

implemented.

· Operators overloading and

functions overloading supports

the implementation of new

types.

Merits of C++ over C

Increased convenience in writing code.

Increased security on the code.

Features such as

single line comments,

const and inline,

new and delete for storage management

 and call by reference

simplify the coding process over C.

Stronger typing in general, and function prototypes in particular, enhance security and facilitate software methodology.

C++ Program

#include <iostream.h>

//contains declarations for the identifiers cin, cout

//and the operators >>, <<

class rational {

//new data type

private:

//accessed only within the class

int num, den;

public:

//accessed from outside the class also

void assign(int, int);
//member function assign

double convrt();

//member function convrt

void invrt();

//member function invrt

void print();

//member function print

void assign(int numerator, int denominator) {

num = numerator;

den = denominator;

}

double convrt() {

return double (num) / den;

}

void invrt() {

int temp = num;

num = den;

den = temp;

}

void print() {

cout << num << “ / ” << den;

//cascading

//cout – predefined object

//standard output stream (screen)

//<< – insertion or put to operator

//inserts(sends) the contents of the variable

//on its right to the object on its left.

}

};

main() {

int a, b;

rational x;

//object of type rational

cout << “enter value”;

cin >> a >> b;

//cascading(multiple use in a statement)

//>> – extraction or get from operator

//extracts(takes) the value from the keyboard

//and assigns to the variable on its right.

x.assign(a, b);

cout << “x = ”;

x.print();

cout << “ = ” << x.convrt() << endl;

//endl – linefeed operator

x.invrt();

cout << “1/x = ”;

x.print();

cout << endl;

}

output

enter value 22 7

x = 22 / 7 = 3.142857

1/x = 7 / 22

C++ Program for the use of class

#include <iostream.h>

class person {

//new data type

char name[30];

int age;

public:

void getdata();

void display();

};

void person :: getdata() {
//member function getdata

cout << “Enter name: ”;

cin >> name;

cout << “Enter age: ”;

cin >> age;

}

void person :: display() {
//member function display

cout << “Name: ” << name << endl;

cout << “Age: ” << age << endl;

}

main() {

person p;

// object of type person

p.getdata();

p.display();

}

output

Enter name: Krishna Rao

Enter age: 45

Name: Krishna Rao

Age: 45

Classes are user defined data types.

Structure of C++ Program

A typical C++ program contains four sections.

Include files

Class declaration

Class functions definitions

Main function program

Each section may be placed in separate code files and then compiled independently or jointly.

It is a common practice to organise a program into three separate files.

The class declarations are placed in a header file and the definitions of member functions go into another file.

This enables the programmer to separate the abstract specification of the interface (class definition) from the implementation details (member functions definition).

The main program that uses the class is placed in a third file which “includes” the previous two files as well as any other files required.

This approach is based on the concept of client-server model.

Member

Functions

Server

Class

Functions

 Main function

Client

Program

Client-Server model

The class definition including the member functions constitute the server that provides services to the main program known as client.

The client uses the server through the public interface of the class.

Review questions and Exercises

1. State whether the following statements are TRUE or FALSE.

a. Since C is a subset of C++, all C programs will run under C++ compilers.

b. In C++, a function contained within a class is called a member function.

c. Looking at one or two lines of code, we can easily recognise whether a program is written in C or C++.

d. In C++, it is very easy to add new features to the existing structure of an object.

e. The concept of using one operator for different purposes is known as operator overloading.

f. The output function printf() cannot be used in C++ programs.

2. Why do we need the pre-processor directive #include <iostream.h>?

3.
How does a main() function in C++ differ from main() in C?

4.
What do you think is the main advantage of the comment // in C++ compared to the old C type comment?

5.
Describe the major parts of a C++ program.

6.
Find errors, if any, in the following C++ statements:

a. cout << “x=” x;

b. m = 5; // n = 10; // s = m + n;

c. cin >> x; >> y;

d. cout << \n “Name:” << name;

e. cout << “Enter value:; cin >> x;

f. /* Addition */ z = x + y;

7. Write C++ programs for the following:

a. to display the following output using a single cout statement.

Maths

= 90

Physics

= 77

Chemistry
= 69

b.
to read two numbers from the keyboard and display the larger value on the screen.

c.
to input an integer value from keyboard and display on screen “Excellent” that many times.

d.
to read the values of a, b and c and display the value of x, where x = a / (b – c).

Test the program for the following values:

i) a = 250, b = 85, c = 25
ii) a = 300, b = 70, c = 70.

e.
to read the temperature in Fahrenheit and display it in Celsius, using a class called temp and member functions.

C++ program to display the following output using a single cout statement.

Maths

= 90

Physics

= 77

Chemistry
= 69

#include <iostream.h>

class marks {

public:

void display();

}

void marks :: display() {

cout << “Maths = 90” << endl << “Physics = 77”

<< endl << “Chemistry = 69” << endl;

}

main () {

marks m;

m.display();

}

output

Maths

= 90

Physics

= 77

Chemistry
= 69

C++ program to read two numbers from the keyboard and display the larger value on the screen.

#include <iostream.h>

class large {

public:

void display(int, int);

}

void large :: display(int number1, int number2) {

if (number1 < number2)

cout << number2 << endl;

else

cout << number1 << endl;

}

main () {

int num1, num2;

large l;

cout << “The two numbers are ”;

cin >> num1 >> num2;

cout << “\n The larger value is ”;

l.display(num1, num2);

}

output

The two numbers are 50 35

The larger value is 50

The two numbers are –50 –35

The larger value is –35

C++ program to input an integer value from keyboard and display on screen “Excellent” that many times.

#include <iostream.h>

class message {

public:

void display(int);

}

void message :: display(int times) {

for (int j = 0; j < times; j++)

cout << “Excellent\n”;

}

main () {

int n;

message m;

cout << “number of times to repeat ”;

cin >> n;

m.display(n);

}

output

number of times to repeat 5

Excellent

Excellent

Excellent

Excellent

Excellent

C++ program to read the values of a, b and c and display the value of x, where x = a / (b – c).

Test the program for the following values:

i) a = 250, b = 85, c = 25
ii) a = 300, b = 70, c = 70.

#include <iostream.h>

class calculate {

double x;

public:

double display(int, int, int);

}

double calculate :: display(int l, int m, int n) {

x = l / (m – n);

cout << “value of x = ” << x << endl;

}

main() {

int a, b, c;

calculate t;

cout << “Values of a, b and c are ”;

cin >> a >> b >> c;

t.display(a, b, c);

}

output

Values of a, b and c are 250 85 85

Value of x = 4.16666

Values of a, b and c are 300 75 70

Value of x =

C++ program to read the temperature in Fahrenheit and display it in Celsius, using a class called temp and member functions.

#include <iostream.h>

class temp {

public :

double convert(double);

}

double temp :: convert(double fahrenheit) {

celsius = 5 / 9 * (fahrenheit – 32);

cout << “Temperature in Celsius is : ” << celsius << endl;

}

main() {

double f;

temp t;

cout << “Temperature in Fahrenheit is : ”;

cin >> f;

t.convert(f);

}

output

Temperature in Fahrenheit is : –40

Temperature in Celsius is : –40

Processor directives

Tokens

Smallest individual units in a program.

Tokens in C++ are

Keywords

Identifiers

Constants

Strings

Operators

Keywords

Explicitly reserved identifiers.

Cannot be used as names for the program variables or user-defined program elements.

char

if auto

const
enum
break

double

else

extern
volatile
struct
continue

float

switch
register

union

int

case

static

typedef

long

for

short

while

signed

do

unsigned

goto

default

sizeof

void

return

class

new

inline
operator
catch
this

private

delete
friend

try

public

throw

protected

virtual

template
asm

Identifiers

Names of variables,

functions,

arrays,

classes,

etc.

Rules:

· Only alphabetic characters, digits and underscores (_) are permitted.

· The name cannot start with a digit.

· Uppercase and lowercase letters are distinct.

· No limit on its length and all the characters in a name are significant.

Data types and declaration

C++ Data Types

User-defined type

Built-in type

Derived Type

structure

array

union

function

class

pointer

enumeration

integral type

void

 floating type

int

char

 float

double

Hierarchy of C++ data types

Size and range of C++ basic data types

Type

 Bytes

Range

char

1

 –128 .. 127

unsigned char

1

 0 .. 255

signed char

1

 –128 .. 127

int

2

 –32768 .. 32767

unsigned int

2

 0 .. 65535

signed int

2

 –32768 .. 32767

short int

2

 –32768 .. 32767

unsigned short int

2

 0 .. 65535

signed short int

2

 –32768 .. 32767

long int

4
 –2147483648 .. 2147483647

signed long int

4
 –2147483648 .. 2147483647

unsigned long int

4

0 .. 4294967295

float

4

 3.4E–38 .. 3.4E+38

double

8

 1.7E–308 .. 1.7E+308

long double

 10

 3.4E–4932 .. 1.1E+4932

Enumerated Data Type

Provides way for attaching names to numbers.

The enum keyword automatically enumerates a list of words by assigning them, values 0, 1, 2, and so on.

Provides an alternative means for creating symbolic constants.

Examples:

enum shape
{circle, square, triangle};

enum colour
{red, blue, green, yellow};

enum position
{off, on};

The tag names shape, colour, and position become new type names in C++.

We can declare new variables using the tag names.

Examples:

shape ellipse;

//ellipse is of type shape

colour background;

//background is of type colour

Each enumerated data type retains its own separate type in C++.

C++ does not permit an int value to be automatically converted to an enum value.

Examples:

colour background = blue;

//allowed

colour background = 7;

//error in C++

colour background = (colour) 7;
//allowed

An enumerated value can be used in place of an int value.

int c = red;

//valid, colour type promoted to int

By default, the enumerators are assigned integer values starting with 0 for the first enumerator, 1 for the second, and so on.

We can over-ride the default by explicitly assigning integer values to the enumerators.

Examples:

enum colour
{red, blue = 4, green = 8};

red is 0 by default.

enum colour
{red = 5, blue, green};

blue is 6 and green is 7.

C++ also permits the creation of anonymous enums (without tag names).

Example:

enum position
{off, on};

off is 0 and on is 1.

In C++, an enum defined within a class (or structure) is local to that class (or structure) only.

In practice, enumeration is used to define symbolic constants for a switch statement.

Example:

enum shape {

circle,

rectangle,

triangle

};

main () {

cout << “Enter shape code:”;

int code;

cin >> code;

while (code >= circle && code <= triangle) {

switch (code) {

case circle :

…

…

break;

case rectangle :

…

…

break;

case triangle :

…

…

break;

}

cout << “Enter shape code:”;

cin >> code;

}

}

Derived Data Types
Arrays

When initialising a character array in C++, the size should be one larger than the number of characters in the string.

char string[4] = “xyz”;

Pointers

C++ adds the concept of

constant pointer

 and pointer to a constant.

char * const ptr1 = “GOOD”;

//constant pointer

We cannot modify the address that ptr1 is initialised to.

int const * ptr2 = &m;

//pointer to a constant

ptr2 is declared as pointer to constant.

It can point to any variable of correct type, but the contents of what it points to cannot be changed.

We can also declare both the pointer and the variable as constants.

const char * const cp = “xyz”;

cp
constant pointer to the string constant.

Neither the address assigned to the pointer cp nor the contents it points to can be changed.

Pointers are extensively used in C++ for

memory management

 and achieving polymorphism.

Symbolic constants in C++
a) using the qualifier const.
 Allows to create typed constants.

const int size = 10;

char name[size];

const modifier without type results in int.

const size = 10;

means

const int size = 10;

C++ requires a const to be initialised.

A const in C++ defaults to internal linkage and is local to the file where it is declared.

To give a const value external linkage so that it can be referenced from another file, we must explicitly define it as an extern in C++.

Example:

extern const total = 100;

b) defining a set of integer constants using enum keyword.

enum {X, Y, Z};

defines X, Y and Z as integer constants with values 0, 1 and 2 respectively.

Equivalent to

const X = 0; const Y = 1; const Z = 2;

We can also assign integer values to X, Y, and Z explicitly.

enum {X = 100, Y = 50, Z = 200};

Type Compatibility

In C++, the types of values must be the same for complete compatibility.

Otherwise, a cast must be applied.

In C++, char is not promoted to the size of int.

sizeof(‘x’)
equals sizeof(char)

Declaration of variables

C++ allows the declaration of a variable anywhere in the scope.

A variable can be declared right at the place of its first use.

It also makes the program easier to understand because the variables are declared in the context of their use.

Example:

main () {

float x;

//declaration of x as float

float sum = 0;

for (int j = 1; j < 5; j++) {
//declaration of j as int

cin >> x;

sum = sum + x;

}

float average;

//declaration of average as float

average = sum / j;

cout << average;

}

Dynamic initialisation of variables

Permits initialisation of the variables at run time using expressions at the place of declaration.

Examples:

int n = strlen(string);

float area = 3.14159 * radius * radius;

Extensively used in object oriented programming.

Reference variables

Provides an alias (alternative name) for a previously defined variable.

General format

data-type & reference-name = variable-name;

Examples:

float total = 100;

float & sum = total;

//sum is alias for total

float & means reference to float.

int & n = 50;

Reference variables must be initialised at the time of declaration.

Major application of reference variables is in passing arguments to functions.

void f(int & x)
{

//uses reference

x = x + 10;

// x is incremented; so also m

}

main()
{

int m = 10;

f(m);

// function call

…

}

when the function call f(m) is executed,

int & x = m;

//x is an alias for m

Operators in C++

All C operators are valid in C++ also.

Other operators are

<<

insertion operator

>>

extraction operator

::

scope resolution operator

Member Dereferencing Operators

::*

pointer-to-member declarator

(*

pointer-to-member operator

.*

pointer-to-member operator

Memory Management / Free store Operators

new

memory allocation operator

delete
memory release operator

Manipulators

endl

linefeed operator

setw

field width operator

Scope Resolution Operator

Same variable name can be used to have different meanings in different blocks.

The scope of the variable extends from the point of its declaration till the end of the block containing the declaration.

A variable declared inside a block is said to be local to that block.

Example:

…

{

int x = 10;

…

}

…

{

int x = 1;

…

}

The two declarations of x refer to two different memory locations different values.

Statements in the second block cannot refer to the variable x declared in the first block, and vice versa.

Blocks in C++ are often nested.

Example:

…

{

int x = 10;

…

{

int x = 1;

Block 2

block 1

…

}

…

}

Block 2 is contained in block 1.

The scope resolution operator allows access to the global version of a variable.

The general format is

::variable-name

C++ program using Scope Resolution Operator

#include <iostream.h>

int m = 10;

//global m

main () {

int m = 20;

//m redeclared, local to main

{

int k = m;

int m = 30;
//m again, local to main

cout << “We are in inner block \n”;

cout << “k = ” << k << “\n”;

cout << “m = ” << m << “\n”;

cout << “::m = ” << ::m << “\n”;

}

cout << “\n We are in outer block \n”;

cout << “m = ” << m << “\n”;

cout << “::m = ” << ::m << “\n”;

}

Output

We are in inner block

k = 20

m = 30

::m = 10

We are in outer block

m = 20

::m = 10

The variable m is declared outside the main() function,

inside the main(),

inside the inner block.

::m will always refer to the global m.

A major application of the scope resolution operator is in the classes to identify the class to which a member function belongs.

Memory Management / Free store Operators

new operator

used to create objects of any type.

The general form is

pointer-variable = new data-type;

pointer-variable
pointer of type data-type

new operator
allocates sufficient memory to hold a data object of type data-type and returns the address of the object.

data-type

any valid data type

pointer-variable
address of the memory space allocated

Examples:

int *p;

float *q;

p = new int;

//p is a pointer of type int

q = new float;

//q is a pointer of type float

We can combine the declaration of pointers and their assignments.

int *p = new int;

int *q = new float;

*p = 25;
//25 is assigned to the newly created int object

*q = 7.5;
//7.5 is assigned to the newly created float object

We can also initialise the memory using the new operator.

The general format is

Pointer-variable = new data-type(value);

value
initial value

Examples:

int *p = new int(25);

float *q = new float(7.5);

The general form for a one-dimensional array is:

pointer-variable = new data-type [size];

size

number of elements in the array

int *p = new int[10];

//creates a memory space for an array of 10 integers

p[0]

first element

p[1]

second element

…

p[9]

last (tenth) element

When creating multi-dimensional arrays with new, all the array sizes must be supplied.

The first dimension may be a variable whose value is supplied at runtime.

All others must be constants.

array_ptr = new int[3][5][4];

array_ptr = new int[m][5][4];

delete operator

When a data object is no longer needed, it is destroyed to release the memory space for reuse.

The general form is:

delete pointer-variable;

Examples:

delete p;

delete q;

To free a dynamically allocated array, the format is:

delete [size] pointer-variable;

size

number of elements in the array to be freed.

delete [] p;

//deletes the entire array pointed to by p.

Advantages of new operator over the function malloc()

· Automatically computes the size of the data object. Need not use the operator sizeof.

· Automatically returns the correct pointer type, so that there is no need to use a type cast.

· Possible to initialise the object while creating the memory space.

· Like any other operator, new and delete can be overloaded.

Manipulators

Operators used to format the data display.

Most commonly used manipulators are endl and setw.

endl manipulator

linefeed to be inserted in an output statement.

Same effect as the newline character “\n”.

cout << “m = ” << m << endl;

setw manipulator

Specifies the field width.

cout << setw(5) << sum << endl;

C++ program for use of manipulators

#include <iostream.h>

#include <iomanip.h>
//for setw

main () {

int Basic = 950, Allowance = 95, Total;

cout << “Basic = ” << setw(10) << Basic << endl;

cout << “Allowance = ” << setw(10) << Allowance << endl;

Total = Basic + Allowance;

cout << “Total = ” << setw(10) << Total << endl;

}

Output

Basic
 =
 950

Allowance =

95

Total
 =
 1045

We can also write own manipulators.

C++ program for new manipulator symbol (Rs.)

#include <iostream.h>

ostream & symbol(ostream & output) {

return output << “\tRs.”;

}

Type Cast Operator

Permits explicit type conversion of variables or expressions.

The general format is:

type-name (expression)

Example:

average = sum / float (i);

Used only if the type is an identifier.

Expressions

An expression is a combination of operators, constants and variables arranged as per the rules of the language.

Also includes function calls which return values.

Consist of one or more operands and zero or more operators to produce a value.

Types of expressions

Constant expressions

Integral expressions

Float expressions

Pointer expressions

Constant expressions

Consist of only constant values.

15

20 + 5 / 2.0

‘x’

Integral expressions

Produce integer results after implementing all the automatic and explicit type conversions.

m * n – 5

// m and n are integer variables

m – ‘x’

5 + int(2.0)

Float expressions

Produce floating-point results.

x + y

// x and y are floating-point variables

x * y / 10

5 + float(10)

Pointer expressions

Produce address values.

&m

// m is a variable

ptr

// ptr is a pointer

ptr + 1

“xyz”

We can mix data types in expressions.

m = 5 + 2.75;

Wherever data types are mixed in an expression, C++ performs the conversions automatically. This process is known as implicit or automatic conversion.

When the compiler encounters an expression, it divides the expressions into sub-expressions consisting of one operator and one or two operands.

short

char

int

unsigned

long int

unsigned long int

float

double

long double

Water-fall model of type conversion

For a binary operator, if the operands types differ, the smaller type is converted to the wider type.

Whenever a char or short int appears in an expression, it is converted to an int.

If one of the operand is an int and the other is a float, the int is converted into a float because a float is wider than an int.

Operator overloading

Assigning different meanings to an operation depending on the context.

The number and type of operands decide the nature of operation to follow.

The input/output operators << and >> are good examples of operator overloading.

Although the built-in definition of the << operator is for shifting of bits, it is also used for displaying the values of various data types.

cout << 75.86

//displays a double type value

cout << “well done”
//displays a char value

Operator precedence and Associativity
Operator

Associativity

::

left to right

(. () [] postfix ++ postfix ––

left to right

prefix ++ prefix –– ~ ! unary + unary –

right to left

unary * unary & (type) sizeof new delete

(* *

left to right

* / %

left to right

+ –

left to right

<< >>

left to right

< <= > >=

left to right

== !=

left to right

&

left to right

^

left to right

|

left to right

&&

left to right

||

left to right

?:

left to right

= *= %= += –= <<= >>= &= ^= |=

right to left

Program flow control

Control structure

Selection

 Sequence

Loop

if-else
 switch

 do-while
while, for

 Two-way
Multiple

Exit-control Entry-control

The if statement

Format 1

Format 2

if (expression is true) {

if (expression is true) {

action 1;

action 1;

}

}

action 2;

else {

action 3;

action 2;

}

action 3;

The switch statement

Multiple-branching statement.

Switch (expression) {s

case 1: {

action 1;

 }

case 2: {

action 2;

 }

…

case n: {

action n;

 }

default: {

action m;

 }

}

action k;

The do-while statement

The while statement

do {

while (condition is true) {

action 1;

action 1;

 } while (condition is true);

}

 action 2;

action 2;

The for statement

for (initial value; test; increment) {

action 1;

}

action 2;

Review questions and Exercises

1. Enumerate the rules of naming variables in C++. How do they differ from ANSI C?

2. An unsigned int can be twice as large as the signed int. Explain How?

3. Why does C++ have type modifiers?

4. What are the applications of void data type in C++?

5. Can we assign a void pointer to an int type pointer? If not, why? How can we achieve this?

6. Describe with examples the uses of enumeration data types.

7. Describe the differences in the implementation of enum data type in ANSI C and C++.

8. Why is an array called a derived data type?

9. The size of a char array that is declared to store a string should be one larger than the number of characters in the string. Why?

10. The const was taken from C++ and incorporated in ANSI C, although quite differently. Explain.

11. How does a constant defined by const differ from the constant defined by the pre-processor statement #define?

12. In C++, a variable can be declared anywhere in the scope. What is the significance of this feature?
13. What do you mean by dynamic initialisation of a variable> Give an example.
14. What is a reference variable? What is the major use of this variable?

15. List at least four new operators added by C++ that aids OOP.

16. What is the application of the scope resolution operator :: in C++?
17. What are the advantages of using new operator compared to the function malloc()?

18. Illustrate with an example, how the setw manipulator works.

19.
How do the following statements differ?

a) char .* const p;

b) char const *p;

20.
Find errors, if any, in the following C++ statements.

a) long float x;

b) char * cp = vp; // vp is a void pointer

c) int code = three; //three is an enumerator

d) int *p = new; //allocate memory with new

e) enum (green, yellow, red);

f) int const *p = total;

g) const int array_size;

h) for (j = 1; int j < 10; j++) cout << j << “\n”;

i) int &. number = 100;

j) float *p = new int [10];

k) int public = 1000;

l) char name[3] = “USA”;

21. Write a function using reference variables as arguments to swap the values of pa pair of integers.

22. Write a function that creates a vector of user-given size M using new operator.

23. Write a program to print the following output using for loops.

1

22

333

4444

55555

…

Functions

Dividing a program into functions is one of the major principles of top-down, structured programming.

It is possible to reduce the size of a program by calling and using them at different places in the program.

main () Function

returns a value of type int to the operating system.

should use the return statement for termination.

Format

int main () {

…

return 0;

}

The keyword int in the main () header is optional.

It is good programming practice to actually return a value from main ().

Function Prototyping

Describes the function interface to the compiler by giving

the number and type of arguments

and
the type of return values.

Declaration statement in the calling program.

Format

type function-name (argument-list);

argument-list
types and names of arguments that must be passed to the function.

Example:

float volume (int x, float y, float z);

Each argument variable must be declared independently inside the parentheses.

In a function declaration, the names of the arguments are dummy variables and are optional.

float volume (int, float, float);

is acceptable at the place of declaration.

We can either include or exclude the variable names in the argument list of prototypes.

In the function definition, names are required because the arguments must be referenced inside the function.

Example

float volume (int a, float b, float c) {

float v = a* b * c;

…

}

The function volume () can be invoked in a program as

float cube1 = volume (b1, w1, h1);

//Function call

The variables b1, w1, and h1 are called actual parameters.

The types should match with the types declared in the prototype.

The calling statement should not include type names in the argument list.

We can also declare a function with an empty argument list.

void display ();
//the function does not pass any parameters.

It is identical to the statement void display (void);
Call by Reference

Provision of the reference variables in C++ permits to pass parameters to the functions by reference.

When we pass arguments by reference, the formal arguments in the called function become aliases to the actual arguments in the calling function.

When the function is working with its own arguments, it is actually working on the original data.

void swap (int a, int b) {
// a and b are reference variables

int t = a;

a = b;

b = t;

}

if m and n are two integer variables, then the function call

swap (m, n);

will exchange the values of m and n using their aliases (reference variables) a and b.

Return by Reference

A function can also return a reference.

int & max (int &x, int &y) {

if (x > y)

return x;

else

return y;

}

The return type of max () is int & (reference to int).

The function returns reference to x or y.

The function call max (a, b) yields a reference to either a or b depending on their values.

The function call can appear on the left hand side of an assignment statement.

The statement

max (a, b) = –1;

is legal and assigns –1 to a if it is larger, otherwise –1 to b.

Default Arguments

C++ allows calling a function without specifying all its arguments.

The function assigns a default value to the parameter which does not have matching argument in the function call.

Default values are specified when the function is declared.

The compiler looks at the prototype to see how many arguments a function uses and alerts the program for possible default values.

Example

float amount (float principal, int period, float rate = 0.15);

value = amount (5000, 7);
//one argument missing

passes the value of 5000 to principal and 7 to period and the function use default value of 0.15 for rate.

value = amount (5000, 5, 0.12);
//no missing argument

passes an explicit value of 0.12 to rate.

A default argument is checked for type at the time of declaration and evaluated at the time of call.

Only the trailing arguments can have default values.

We must add defaults from right to left.

We cannot provide a default value to a particular argument in the middle of an argument list.

Examples

int mul (int l, int m = 5, int n = 10);

//legal

int mul (int l = 5, int m);

//illegal

int mul (int l = 0, int m, int n = 10);

//illegal

int mul (int l = 2, int m = 5, int n = 10);

//legal

Default arguments are useful in situations where some arguments always have the same value.

Provides a greater flexibility to the programmers.

A function can be written with more parameters than are required.

Advantages

· To add new parameters to the existing functions.

· To combine similar functions into one.

const Arguments

In C++, an argument to a function can be declared as const.

int strlen(const char *p);

int length(const string &s);

The qualifier const tells the compiler that the function should not modify the argument.

Significant only when we pass arguments by reference or pointers.

//C++ program with default arguments

#include <iostream.h>

#include <stdio.h>

int main () {

float amount;

float value(float p, int n, float r = 0.15);
//prototype

void printline(char ch = ‘*’, int linelength = 40);
//prototype

printline();

//uses default values for arguments

amount = value(5000.00, 5);
//default for 3rd argument

cout << “\n
Final Value = ” << amount << “\n\n”;

printline(“^”);

//use default value for 2nd argument

return 0;

}

float value(float p, int n, float r) {

int year = 1;

float sum = p;

while (year <= n) {

sum = sum * (1 + r);

year = year + 1;

}

return (sum);

}

void printline(char ch, int linelength) {

for (int j = 1; j <= linelength; j++)

printf(“%c”, ch);

printf(“\n”);

}

Output

**

Final Value = 10056.8

^^

Inline function

Functions are used to save memory space, when it is called many times.

Every time a function is called, it takes a lot of extra time in executing a series of instructions for tasks such as

jumping to the function,

saving registers,

pushing arguments into the stack

 and returning to the calling function.

When a function is small, a substantial percentage of execution time may be spent in such overheads.

An inline function expands in line when it is invoked. That is, the compiler replaces the function call with the corresponding function code.

The general format is:

inline function-header {

function body

}

All inline functions must be defined before they are called.

Usually, the functions are made inline when they are small enough to be defined in one or two lines.

Ex:
inline double cube(double a) { return (a * a * a); }

inline expansion may not work

· for functions returning values, if a loop, a switch, or a goto exists.

· for functions not returning values, if a return statement exists.

· If functions contain static variables.

· If inline functions are recursive.

Inline expansion makes a program run faster because the overhead of a function call and return is eliminated.

It makes the program to take up more memory because the statements that define the inline function are reproduced at each point where the function is called.

Example:

#include <iostream.h>

inline float cube (const float s) {

return s * s * s;

}

int main() {

cout << “Enter the Side length: ”;

float side;

cin >> side;

cout << “Volume of cube is ” << cube(side) << endl;

return 0;

}

Function Overloading

Same function name can be used to create functions that perform a variety of different tasks.

A family of function names can be designed with one function name but with different argument lists.

The function would perform different operations depending on the argument list in the function call.

The correct function to be invoked is determined by checking the number and type of the arguments but not on the function type.

Example

//Declarations

int add(int a, int b);

//prototype 1

int add(int a, int b, int c);

//prototype 2

double add(double x, double y);
//prototype 3

double add(int p, double q);

//prototype 4

double add(double p, int q);

//prototype 5

//Function calls

cout << add(5, 10);

//uses prototype 1

cout << add(15, 10.0);

//uses prototype 4

cout << add(12.5, 7.5);

//uses prototype 3

cout << add(5, 10, 15);

//uses prototype 2

cout << add(0.75, 5);

//uses prototype 5

A function call first matches the prototype having the same number and type of arguments and then calls the appropriate function for execution.

Steps involved in the function selection

1. The compiler first tries to find an exact match in which the types of actual arguments are the same, and use that function.

2. If an exact match is not found, the compiler uses the integral promotions to the actual arguments, such as, char to int, float to double to find a match.

3. When either of them fails, the compiler tries to use the built-in conversions to the actual arguments and then uses the function whose match is unique.

If the conversion is possible to have multiple matches, then the compiler will generate an error message.

4. If all of the steps fail, then the compiler will try the user-defined conversions in combination with integral promotions and built-in conversions to find a unique match.

Should not overload unrelated functions and should reserve function overloading for functions that perform closely related tasks.

The default arguments may be used instead of overloading.

Overloaded functions are extensively used for handling class objects.

//C++ program using function overloading

#include <iostream.h>

//Declarations (prototypes)

int volume(int);

double volume(double, int);

long volume(long, int, int);

int main () {

cout << volume(10) << “\n”;

cout << volume(2.5, 8) << “\n”;

cout << volume(100L, 75, 15) << “\n”;

return 0;

}

//Function definitions

int volume(int s) {

//cube

return(s * s * s);

}

double volume(double r, int h) {

//cylinder

return(3.14519 * r * r * h);

}

long volume(long l, int b, int h) {

//rectangular box

return(l * b * h);

}

Output

1000

157.26

112500

Friend Function
C++ allows the common function, which is not a member of any of the classes, to be made friendly to have access to the private data of those classes.
To make an outside function “friendly” to a class, declare the function as a friend of the class.

General format is

friend return-type function-name(arguments)

The keyword friend should precede the function declaration.

The function is defined elsewhere in the program like a normal C++ function and does not use either the keyword friend or the scope operator ::.

The functions declared with the keyword friend are known as friend functions.

A function can be declared as a friend in any number of classes.

A friend function has full access rights to the private members of the class.

Characteristics of a friend function:

· It is not the scope of the class to which it has been declared as friend.

· Since it is not in the scope of the class, it cannot be called using the object of that class. It can be invoked like a normal function without the help of any object.

· Unlike member functions, it cannot access the member names directly and has to use an object name and dot membership operator with each member name. (Ex: A.x).

· It can be declared either in the public or the private part of a class without affecting its meaning.

· Usually, it has the objects as arguments.

The friend functions are often used in operator overloading.

Example 1:

#include <iostream.h>

class data {

int mem1, mem2;

public:

data() {

//constructor

mem1 = 5;

mem2 = 10;

}

friend void change(data);

};

void change(data d)
{

//definition of friend function

int x;

x = d.mem1 + d.mem2;
//private data accessing

cout << “Sum = ” << x;

d.mem1 += d.mem2;
//modifying private data

cout << “Sum = ” << d.mem1;

cout << “mem1 = ” << “mem2 = ” << d.mem2;

}

void main () {

data d;

change (d);

}

Example 2:

#include <iostream.h>

class two;

class one {

int data1;

public:

one() {

//constructor

data1 = 100;

}

friend int accessboth(one, two);

};
class two {

int data2;

public:

two() {

//constructor

data2 = 200;

}

friend int accessboth(one, two);

};

int accessboth (one a, two b) {

return (a.data1 + b.data2);

};

void main() {

one a;

two b;

cout << accessboth (a, b);

}

Commonly used math library functions

Function

Purpose

ceil(x)

Rounds x to the smallest integer not less than x.

ceil(8.1) = 9.0 and ceil(–8.8) = –8.0

floor(x)
Rounds x to the largest integer not greater than x.

floor(8.2) = 8.0 and floor(–8.8) = –9.0

sin(x)

Trigonometric sine of x (x in radians).

cos(x)

Trigonometric cosine of x (x in radians).

tan(x)

Trigonometric tangent of x (x in radians).

log(x)

Natural logarithm of x (base e).

log10(x)

Logarithm of x (base 10).

exp(x)

Exponential function ex.

pow(x, y)

x raised to power y (xy).

fabs(x)

Absolute value of x.

sqrt(x)

Square root of x (x > 0).

Scope of variables

Default arguments

Dynamic allocation

New and delete operators

PAGE
54
oop

