Unit – II: Structure of C++

Unit – III

Data Abstraction

Class definition

Controlling access to other functions

Different types of constructors

Destructor

Objects and classes

Dynamic creation and destruction of objects

Polymorphism

Overloading functions and operators

Runtime polymorphism

Overloading new and delete operators

Constructors

Special member function whose task is to initialise the objects of its class.

Its name is the same as the class name.

Invoked whenever an object of its associated class is created.

It constructs values of data members of the class.

Example: A constructor is declared and defined.

//class with a constructor

class integer {

int m, n;

public:

integer (void);

//constructor declared

…

};

integer :: integer (void) {

//constructor defined

m = 0;

n = 0;

}

The declaration

integer int1;

//object int1 created

creates the object int1 of type integer and initialises its data members m and n to zero.

Default constructor

Accepts no parameters.

The default constructor for class A is A :: a().

When a constructor is declared for a class, initialisation of the class objects becomes mandatory.

Special characteristics of constructor functions

· They should be declared in the public section.

· They are invoked automatically when the objects are created.

· They do not have return types, not even void and they cannot return values.

· They cannot be inherited, though a derived class can call the base class constructor.
· They can have default arguments.
· Constructors cannot be virtual.
· We cannot refer to their addresses.
· An object with a constructor (or destructor) cannot be used as a member of a union.
· They make ‘implicit calls’ to the operators new and delete when memory allocation is required.
Parameterised Constructors

Initialise the various data elements of different objects with different values when they are created.

Take arguments.

Example

class integer {

int m, n;

public:

integer (int x, int y);
//parameterised constructor

…

};

integer :: integer (int x, int y) {

m = x;

n = y;

}

integer int1 = integer (0, 100);

//explicit call

integer int1(0, 100);

//implicit call

C++ program for class with constructors

#include <iostream.h>

class integer {

int m, n;

public:

integer (int, int);

//constructor declared

void display (void) {

cout << “ m = ” << m << “\n”;

cout << “ n = ” << n << “\n”;

}

};

integer :: integer (int x, int y) {
//constructor defined

m = x;

n = y;

}

int main () {

integer int1(0, 100);

//constructor called implicitly

integer int2 = integer(25, 75); //constructor called explicitly

cout << “\nOBJECT1” << “\n”;

int1.display();

cout << “\nOBJECT2” << “\n”;

int2.display();

return 0;

}

Output

OBJECT1

m = 0

n = 100

OBJECT2

m = 25

n = 75

Multiple Constructors in a class

class integer {

int m, n;

public:

integer () {

//constructor 1

m = 0;

n = 0;

}

integer (int a, int b) {
//constructor 2

m = a;

n = b;

}

integer (integer &i) {
//constructor 3(copy constructor)

m = i.m;

n = i.n;

}

};

Declares three constructors for an integer object.

The declaration

integer I1;

would automatically invoke the first constructor and set both m and n of I1 to zero.

The statement

integer I2 (20, 40);

would call the second constructor which will initialise the data members m and n of I2 to 20 and 40 respectively.

The statement

integer I3(I2);

would invoke the third constructor which copies the values of I2 into I3.

It sets the value of every data element of I3 to the value of the corresponding data element of I2.

Copy Constructor

Accepts a reference to its own class as a parameter.

Declares and initialises an object from another object.

class A {

…

public:

A (A&);

};

The statement

integer I2 (I1);

or

integer I2 = I1;

would define the object I2 and at the same time initialise it to the values of I1.

Copy initialisation

Process of initialising through a copy constructor.

Destructors

Destroys the objects that have been created by a constructor.

Member function whose name is the same as the class name but is preceded by a tilde (~).

The destructor for the class integer can be defined as

~integer () { }

Never takes any argument nor does it return any value.

Invoked implicitly by the compiler upon exit from the program to clean up storage that is no longer accessible.

It is a good practice to declare destructors in a program since it releases memory space for future use.

C++ program for implementation of destructors

#include <iostream.h>

int count = 0;

class alpha {

public:

alpha () {

count++;

cout << “\nNo. of object created ” << count;

}

~alpha () {

cout << “\nNo. of object destroyed ” << count;

count--;

}

};

int main () {

cout << “\nEnter Main”;

alpha A1, A2, A3, A4;

{

cout << “\nEnter Block1”;

alpha A5;

}

{

cout << “\nEnter Block2”;

alpha A6;

}

cout << “\nRe-Enter Main”;

return 0;

}

Output

Enter Main

No. of object created 1

No. of object created 2

No. of object created 3

No. of object created 4

Enter Block1

No. of object created 5

No. of object destroyed 5

Enter Block2

No. of object created 5

No. of object destroyed 5

Re-Enter Main

No. of object destroyed 4

No. of object destroyed 3

No. of object destroyed 2

No. of object destroyed 1

Objects and classes
Class

Binds the data and its associated functions together.

Allows the data and functions to be hidden from external use.

When defining a class, we are creating a new abstract data type that can be treated like any other built-in data type.

Class specification has two parts:

Class declaration

Describes the type and scope of its members.

Class function definitions

Describes how the class functions are implemented.

General form of a class declaration

class class_name {

private:

variable declarations;

function declarations;

public:

variable declarations;

function declarations;

};

The body of a class is enclosed within braces and terminated by a semicolon.

The class body contains the declaration of variables and functions.

The class members that have been declared as private can be accessed only from within the class.

Public members can be accessed from outside the class also.

Use of the keyword private is optional.

By default, the members of a class are private.

Data members

Variables declared inside the class.

Member functions

Functions declared inside the class.

Only the member functions can have access to the private data members and private functions.

Example

class item {

int number;

//variables declaration

float cost;

//private by default

public:

void getdata (int a, float b);
//functions declaration

void putdata (void);

//using prototype

};

Data members are usually declared as private and the member functions as public.

Creating Objects

item x;

//memory for x is created
creates a variable x of type item.

The class variables are known as objects.

x is called an object of type item.

We may also declare more than one object in one statement.

Example

item x, y, z;

Objects can also be created when a class is defined by placing their names immediately after the closing brace.

class item {

…

} x, y, z;

would create the objects x, y and x of type item.

Accessing Class Members

The private data of a class can be accessed only through the member functions of that class.

Format for calling a member function

object-name.function-name (actual-arguments);

Example

x.getdata (100, 75.5);

assigns the value 100 to number and 75.5 to cost of the object x.

A member function can be invoked only by using an object of the same class.

Objects communicate by sending and receiving messages.

A variable declared as public can be accessed by the objects directly.

Example

class xyz {

int x;

int y;

public:

int z;

};

…

…

xyz p;

p.x = 0;

//error, x is private
p.z = 10;

//ok, z is public
…

…

Defining Member functions

Member functions can be defined

outside the class definition

and inside the class definition.

Outside the class definition

General form of a member function definition is

return-type class-name :: function-name(argument declaration)

{

function body

}

function-name belongs to the class class-name.

Characteristics of the member functions

· Several different classes can use the same function name. The ‘membership label’ resolves their scope.

· Member functions can access the private data of the class.

· A member function can call another member function directly, without using the dot operator.

Inside the Class definition

class item {

int number;

float cost;

public:

void getdata (int a, float b);
//declaration

//inline function

void putdata (void); {

//definition inside the class

cout << number << “\n”;

cout << cost << “\n”;

}

};

When a function is defined inside a class, it is treated as an inline function.

Only small functions are defined inside the class definition.

C++ Program with class

#include <iostream.h>

class item {

int number;

//private by default

float cost;

//private by default

public:

void getdata(int a, float b);
//prototype declaration

//Function defined inside class

void putdata(void) {

cout << “Number :” << number << “\n”;

cout << “Cost :” << cost << “\n”;

}

};

//Member function definition

void item :: getdata(int a, float b) {
//membership label

number = a;

//private variables directly used

cost = b;

}

int main() {

item x;

//object x

cout << “\nObject x ” << “\n”;

x.getdata(100, 299.95);

//calling member function

x.putdata();

//calling member function
item y;

//another object

cout << “\nObject y” << “\n”;

y.getdata(200, 175.50);

y.putdata();

return 0;

}

The class item contains two private variables and two public functions.

The member function getdata () (defined outside the class) supplies values to both the variables.

Member functions can have direct access to private data items.

The member function putdata () (defined inside the class) behaves like an inline function and displays the values of the private variables number and cost.

Creates the objects x and y.

Output

Object x

Number : 100

Cost : 299.95

Object y

Number : 200

Cost : 175.5

Nesting of member functions

A member function can be called by using its name inside another member function of the same class.

C++ program

#include <iostream.h>

class set {

int m, n;

public:

void input(void);

void display(void);

void largest(void);

};

int set :: largest(void) {

if (m >= n) return (m);

else
return (n);

}

void set :: input (void) {

cout << “Input values of m and n”;

cin >> m >> n;

}

void set :: display (void) {

cout << “Largest value = ” << largest() << “\n”;

//calling member function

}

int main() {

set A;

A.input();

A.display();

return 0;

}

Output

Input values of m and n
25 18

Largest value = 25

Private Member Functions

Can only called by another function that is a member of the class.

An object cannot invoke a private function using the dot operator.

Example

class sample {

int m;

void read(void);

//private member function

public:

void update(void);

void write(void);

};

void sample :: update(void) {

read();

//simple call, no object used

}

The function read() can be called by the function update() to update the value of m.

Memory allocation for objects

The member functions are created and placed in the memory space only once when they are defined as a part of a class specification.

No separate space is allocated for member functions when the objects are created.

Static Data Members / Class Variables

A data member of a class can be qualified as static.

Characteristics of a static member variable

· It is initialised to zero when the first object of its class is created. No other initialisation is permitted.

· Only one copy of that member is created for the entire class and is shared by all the objects of that class, no matter how many objects are created.

· It is visible only within the class, but its lifetime is the entire program.

Used to maintain values common to the entire class.

Used as a counter that records the occurrences of all the objects.

Type and scope of each static member variable must be defined outside the class definition.

The static data members are stored separately.

C++ program illustrating the use of a static data member

#include <iostream.h>

class item {

static int count;

int number;

public:

void getdata(int a) {

number = a;

count++;

}

void getcount(void) {

cout << “Count : ” << count << “\n”;

}

};

int item :: count;

//definition of static data member

int main() {

item a, b, c:

//count is initialised to zero

a.getcount();

//display count

b.getcount();

c.getcount();

a.getdata(100);
//getting data into object a

b.getdata(200);
//getting data into object b

c.getdata(300);
//getting data into object c

cout << “After reading data” << “\n”;

a.getcount();

//display count

b.getcount();

c.getcount();

return 0;

}

Output

Count : 0

Count : 0

Count : 0

After reading data

Count : 3

Count : 3

Count : 3

The static variable count is initialised to zero when the objects are created.

While defining a static variable, some initial value can also be assigned to the variable.

int item :: count = 10;
//count is initialised to 10

Static Member Functions

Can have access to only other static members (functions or variables) declared in the same class.

Can be called using the class name (instead of its objects).

class-name :: function-name;

C++ Program using static member function

#include <iostream.h>

class test {

int code;

static int count;
//static member variable
public:

void setcode (void) {

code = ++count;

}

void showcode (void) {

cout << “Object number : ” << code << “\n”;

}

static void showcount(void)
{ //static member function

cout << “Count : ” << count << “\n”;

}

};

int test :: count;

int main() {

test t1, t2;

t1.setcode();

t2.setcode();

test :: showcount();
//accessing static function

test t3;

t3.setcode();

test :: showcount();

t1.showcode();

t2.showcode();

t3.showcode();

return 0;

}

Output

Count : 2

Count : 3

Object number : 1

Object number : 2

Object number : 3

static function showcount()

Displays the number of objects created till that moment.

static variable count

Count of number of objects created.

function showcode()

Displays the code number of each object.

Objects as Function Arguments

An object may be used as a function argument.

Pass-by-value

A copy of the entire object is passed to the function.

Pass-by-reference

Only the address of the object is transferred to the function.

C++ Program using objects as arguments

//Performs the addition of time in the hour and minutes format

#include <iostream.h>

class time {

int hours;

int minutes;

public:

void gettime (int h, int m) {

hours = h;

minutes = m;

}

void puttime (void) {

cout << hours << “ hours and ”;

cout << minutes << “ minutes” << “\n”;

}

void sum(time, time);
//objects as arguments

};

void time :: sum(time t1, time t2) {
//t1, t2 are objects

minutes = t1.minutes + t2.minutes;

hours = minutes / 60;

minutes = minutes % 60;

hours = hours + t1.hours + t2.hours;

}
int main() {

time T1, T2, T3;

T1.gettime(2, 45);

//get T1

T2.gettime(3, 30);

//get T2

T3.sum(T1, T2);

//T3 = T1 + T2

cout << “T1 = ”; T1.puttime();
//display T1

cout << “T2 = ”; T2.puttime();
//display T2

cout << “T3 = ”; T3.puttime();
//display T3

return 0;

}

Output

T1 = 2 hours and 45 minutes

T2 = 3 hours and 30 minutes

T3 = 6 hours and 15 minutes

Operator Overloading
ability to provide the operators with a special meaning for a data type.

Operator function

specifies what it means in relation to the class to which the operator is applied.

General format

return-type class-name :: operator (op-arglist) {

function body

//task defined

}

return-type
type of value returned.

op

operator being overloaded.

operator op
function name.

Operator functions must be either member functions or friend functions.

Friend function will have only one argument for unary operators and two for binary operators.

Member function has no arguments for unary operators and only one for binary operators.

Object used to invoke the member function is passed implicitly and is available for the member function.

Arguments may be passed either by value or by reference.

Operator functions are declared in the class using prototypes.

vector is a data type of class

vector operator+ (vector);

//vector addition

vector operator– ();

//unary minus
friend vector operator+ (vector, vector);
//vector addition

friend vector operator– (vector);

//unary minus

vector operator– (vector &a);

//subtraction

int operator == (vector);

//comparison

friend int operator== (vector, vector);
//comparison

Steps in the process of overloading

1. Create a class that defines the data type that is to be used in the overloading operation.

2. Declare the operator function operator op() in the public part of the class. It may be either a member function or a friend function.

3. Define the operator function to implement the required operations.

Overloaded operator functions can be invoked by expressions such as

op x or x op
for unary operators

and x op y

for binary operators.

op x or x op would be interpreted as operator op (x) for friend functions.

The expression x op y would be interpreted as

x.operator op (y)
for member functions

operator op (x, y)
for friend functions

When both the forms are declared, standard arguments matching is applied to resolve any ambiguity.

Overloading Unary operations

Unary minus operator takes one operand.

Changes the sign of an operand when applied to a basic data item.

The unary minus when applied to an object changes the sign of each of its data items.

C++ Program for overloading unary minus

#include <iostream.h>

class space {

int x, y, z;

public:

void getdata (int a, int b, int c);

void display (void);

void operator– ();

//overload unary minus

};

void space :: getdata (int a, int b, int c) {

x = a;

y = b;

z = c;

}

void space :: display (void) {

cout << x << “ ” << y << “ ” << z << “\n”;

}

void space :: operator– () {

x = –x;

y = –y;

z = –z;

}

int main () {

space S;

S.getdata(10, –20, 30);

cout << “S : ”;

S.display ();

–S;

//activates operator– () function

cout << “S : ”;

S.display ();

return 0;

}

Output

S : 10 –20 30

S : –10 20 –30

The function operator ()

takes no argument.

changes the sign of data members of the object S.

is a member function of the same class, it can directly access the members of the object which activated it.

It is possible to overload a unary minus operator using a friend function.

friend
void operator– (space &s);

//declaration

void operator– (space &s) {

//definition

s.x = –s.x;

s.y = –s.y;

s.z = –s.z;

}

The argument is passed by reference.

Overloading Binary operators

C++ Program for overloading + operator

#include <iostream.h>

class complex {

float x, y;

//real and imaginary parts

public:

complex () { }

//constructor 1

complex (float real, float imag) {

//constructor 2

x = real;

y = imag;

}

complex operator+ (complex);

void display (void);

};

complex complex :: operator+ (complex c) {

complex temp;

//temporary

temp.x = x + c.x;

//these are

temp.y = y + c.y;

//float additions

return (temp);

}

void complex :: display (void) {

cout << x << “ + j” << y << “\n”;

}

int main () {

complex C1, C2, C3;

//invokes constructor 1

C1 = complex (2.5, 3.5);

//invokes constructor 2

C2 = complex (1.6, 2.7);

C3 = C1 + C2;

cout << “C1 = ”;
C1.display ();

cout << “C2 = ”;
C2.display ();

cout << “C3 = ”;
C3.display ();

return 0;

}

Output

C1 = 2.5 + j3.5

C2 = 1.6 + j2.7

C3 = 4.1 + j6.2

In overloading of binary operators
left-hand operand

invokes the operator function

right-hand operand
passed as an argument.

Overloading Binary operators using friend function

friend function may be used in the place of member functions for overloading a binary operator.

friend function requires two arguments to be explicitly passed to it.

C++ Program for overloading + operator using friend function

#include <iostream.h>

class complex {

float x, y;

//real and imaginary parts

public:

complex () { }

//constructor 1

friend complex operator+ (complex, complex);

void display (void);

};

complex operator+ (complex a, complex b) {

return complex ((a.x + b.x), (a.y + b.y));

}

void complex :: display (void) {

cout << x << “ + j” << y << “\n”;

}

int main () {

complex C1, C2, C3;

//invokes constructor 1

C3 = operator+ (C1, C2);

cout << “C1 = ”;
C1.display ();

cout << “C2 = ”;
C2.display ();

cout << “C3 = ”;
C3.display ();

return 0;

}

Output

C1 = 2.5 + j3.5

C2 = 1.6 + j2.7

C3 = 4.1 + j6.2

Rules (Restrictions and limitations) for Overloading operators

1. Only existing operators can be overloaded. New operators cannot be created.

2. The overloaded operator must have at least one operand that is of user-defined type.

3. We cannot change the basic meaning of an operator. The plus (+) operator cannot be redefined to subtract one value from the other.

4. Overloaded operators follow the syntax rules of the original operators. They cannot be overridden.

5. Sizeof, membership(.), pointer-to-member(.*), scope resolution(::), conditional(?:) operators cannot be overloaded.

6. We cannot use friend functions to overload assignment(=), function call(()), subscripting([]), class member access(() operators. Member functions can be used to overload the above operators.

7. Unary operators, overloaded by means of a member function, take no explicit arguments and return no explicit values and those overloaded by means of a friend function take one reference argument (the object of the relevant class).

8. Binary operators overloaded through a member function take one explicit argument and those which are overloaded through a friend function take two explicit arguments.

9. When using binary operators overloaded through a member function, the left hand operand must be an object of the relevant class.

10. Binary arithmetic operators such as +, –, *, and / must explicitly return a value. They must not attempt to change their own arguments.

Type conversions

When constants and variables of different types are mixed in an expression, automatic type conversion is applied to the operands as per certain rules.

An assignment operation also causes the automatic type conversion.

The type of data to the right of an assignment operator is automatically converted to the type of the variable on the left.

Example

int m;

float x = 3.14159;

m = x;

converts x to an integer before its value is assigned to m.

The type conversions are automatic as long as the data types involved are built-in types.

Basic to Class Type

Example

//converting an int type to a class type
class time {

int hours, minutes;

public:

…

time (int t) {

//constructor

hours = t / 60;

//t in minutes

minutes = t % 60;

}

};

Conversion statements used

time = T1;

//object T1 created

int duration = 85;

T1 = duration;

//int to class type
The hours member of T1 contains 1 and minutes member 25, denoting 1 hours and 25 minutes.

The constructors used for the type conversion take a single argument whose type is to be converted.

Class to Basic Type

Overloaded casting operator (Conversion function) converts a class type data to a basic type.

Converts a class type data to typename.

General form of an overloaded casting operator function

operator typename () {

Function statements

}

operator double ()

converts a class object to type double.

operator int ()

converts a class type object to type int.

Example

vector :: operator double () {

double sum = 0;

for (int j = 0; j < size; j++)

sum = sum + v[j] * u[j];

return sqrt (sum);

}

converts a vector to the corresponding scalar magnitude.

Casting operator function

· must be a class member.

· must not specify a return type.

· must not have any arguments.

One Class to Another Class Type

Example

objX = objY;

//objects of different types

objX

object of class X
objY

object of class Y
class Y type data is converted to the class X type data and the converted value is assigned to the objX.

Y

Source class

X

Destination class

Conversions between objects of different classes can be carried out by either constructor or a conversion function.

Depends upon where we want the type-conversion function to be located in the source class or in the destination class.

Conversions between objects

 objX
=
 objY

//Y is a source class

class Y

casting operator

converted value of type X

function

Conversion here

 (source class)

class X

class Y

 Constructor

 data access

function

argument of type Y
functions

 conversion here

(destination class)

Type conversions

Conversion from

 Source class
 Destination class

Basic to Class type

 --

Constructor

Class to Basic type

Casting operator

--

Class to Class type

Casting operator
Constructor

Conversion from a class to any other type / class should makes use of a casting operator in the source class.

Conversion from any other type / class to a class type should makes use of a constructor in the destination class.

Overloading new and delete operators

increases the efficiency of memory management.

· The first argument of operator new must be of type size_t (in stdlib / stddef.h) and it must return a void *.

· The first argument of operator delete must be of type void *, and it must not return a value.

Second argument can be of type size_t.

When new and delete operators are defined, C++ compiler treats them as static member functions.

C++ compiler has to call new before constructor and delete after destructor, which must be static.

General format of new operator

void * operator new(size_t size) {

//perform allocation

return pointer-to-memory

}

General format of delete operator

void * operator delete(void * p) {

//free memory pointed to p

}

set_new_handler()

//new.h
Sets the function to be called when a request for memory allocation can’t be satisfied.

Ex: set_new_handler(memwarning);

memwarning is a function without any arguments.

memset()

//mem.h / string.h / iostream.h
sets n bytes of s to byte c

Ex: void * memset(void *s, int c, size_t n)

memset(s, c, n)

s
pointer to some data type

c
character to be set

n
no. of bytes of array

C++ program for new and delete operators

#include <iostream.h>

#include <stdlib.h>

#include <new.h>

void main() {

void memwarning();

void * operator new(size_t, int);

void operator delete(void *);

char *p = new(‘$’) char[100];

cout << endl << “First allocation: P = ”

<< hex << long(p) << endl;

for (int i = 0; i < 100; i++)

cout << p[i];

delete p;

p = new(‘*’) char[64000u];

delete p;

}

void memwarning() {

cout << endl << “free store is now empty”;

exit(1);

}

void * operator new(size_t sz, int setvalue) {

void *p;

p = malloc(sz);

if (p == NULL)

memwarning();

memset(p, setvalue, sz);

return(p);

}

void operator delete(void *pp) {

free(pp);

}

PAGE
37
oop

