Unit – IV: Inheritance, Virtual Functions

Unit – IV

Inheritance

Derived classes

Syntax of derived classes

Access to the base class

Overloading inherited member functions

Multiple inheritance

Virtual base class

Virtual functions and Polymorphism:

Static and Dynamic bindings

Virtual functions

Pure Virtual Functions

Dynamic binding through virtual functions

Virtual functions call mechanism

Implications of polymorphic use of classes

Virtual destructors

Calling virtual functions in a base class constructor

Inheritance/Derivation

Mechanism of deriving a new class from an old class.

Old class

Base class

New class
Derived class/Sub class

The derived class inherits some or all of the traits from the base class.

Single inheritance

A derived class with only one base class.

A

B

Multiple inheritance

A derived class with several base classes.

 A

 B

C

Hierarchical inheritance

The traits of one class may be inherited by more than one class.

A

 B C
 D

Multilevel inheritance

Mechanism of deriving a class from another derived class.

A

B

C

Hybrid inheritance

Combination of hierarchical and multiple inheritances.

A

 B

C

D

Defining Derived classes

A derived class can be defined by specifying its relationship with the base class in addition to its own details.

General Form

class derived-class-name : visibility-mode base-class-name {

…//

members of derived class
};

:
derived-class-name is derived from the base-class-name.

visibility-mode
specifies whether the features of the base class are privately derived or publicly derived.

optional.

private or public. Default is private.

Examples

1.
class ABC : private XYZ {
//private derivation

members of ABC

};

2.
class ABC : public XYZ {
//public derivation

members of ABC

};

3.
class ABC : XYZ {

//private derivation by default

members of ABC

};

When a base class is privately inherited by a derived class, ‘public members’ of the base class become ‘private members’ of the derived class.

The public members of the base class can only be accessed by the member functions of the derived class.

Inaccessible to the objects of the derived class.

When a base class is publicly inherited by a derived class, ‘public members’ of the base class become ‘public members’ of the derived class.

Accessible to the objects of the derived class.

C++ Program for Single inheritance

#include <iostream.h>

class B {

//base class

int a;

//private; not inheritable

public:

int b;

//public; ready for inheritance

void get_ab();

int get_a(void);

void show_a(void);

};

class D : public B {

//public derivation

int c;

public:

void mul (void);

void display (void);

};

void B :: get_ab(void) {

a = 5;

b = 10;

}

int B :: get_a() {

return a;

}

void B :: show_a() {

cout << “a = ” << a << “\n”;

}

void D :: mul() {

c = b * get_a();

}

void D :: display() {

cout << “a = ” << get_a() << “\n”;

cout << “b = ” << b << “\n”;

cout << “c = ” << c << “\n \n”;

}

int main () {

D d;

d.get_ab();

d.mul();

d.show_a();

d.display();

d.b = 20;

d.mul();

d.display();

return 0;

}

Output

a = 5

a = 5

b = 10

c = 50

a = 5

b = 20

c = 100

class D is a public derivation of the base class B.

D inherits all the public members of B and retains their visibility.

Data member a is private in B and cannot be inherited.

Objects of D are able to access it through an inherited member function of B.

Protected visibility modifier

A member declared as protected is accessible by the member functions within its class and any class immediately derived from it.

Example

class alpha {

private:

//optional

…

//visible to member functions within its class

…

protected:
//visible to member functions of its own and

…

//derived class

…

public:

//visible to all functions in the program

…

…

};

A protected member, inherited in public mode becomes protected in the derived class.

It is accessible by the member functions of the derived class.

It is available for further inheritance.

A protected member, inherited in private mode becomes private in the derived class.

It is accessible by the member functions of the derived class.

It is not available for further inheritance.

Protected derivation

Allows to inherit a base class in protected mode.

Both the public and protected members of the base class become protected members of the derived class.

Visibility of inherited members

Base class visibility
Derived class visibility

Public derivation
Private derivation
Protected derivation

Private
Not inherited
Not inherited
Not inherited

Protected
Protected
Private
Protected

Public
Public
Private
Protected

The keywords private, protected and public may appear in any order and any number of times in the declaration of a class.

Example

class beta {

protected:

…

public:

…

private:

…

public:

…

};

is a valid class definition.

Conventional format

class beta {

…

//private by default

protected:

…

public:

…

};

View of access control to the members of a class

Friend functions and the member functions of a friend class can have direct access to both the private and protected data.

Member functions of a derived class can direct access only the protected data and can access the private data through the member functions of the base class.

All users

derived class

own member

member

 private

functions and

functions

friendly

functions and

 protected

classes

 public

Multilevel inheritance

Base class A Grandfather

Intermediate B Father

base class

Derived class C Child

The class A serves as a base class for the derived class B, which in turn serves as a base class for the derived class C.

Class B is known as intermediate base class.

Provides a link for the inheritance between A and C.

The chain ABC is known as inheritance path.

Declaration of a derived class with multilevel inheritance

class A {…};

//Base class

class B : public A {…};

//B derived from A

class C : public B {…};

//C derived from B

This process can be extended to any number of levels.

Example

Assume that the test results of a batch of students are stored in three different classes.

Class student stores the roll-number.

Class test stores the marks obtained in two subjects.

Class result contains the total marks obtained in the test.

The class result can inherit the details of the marks obtained in the test and the roll-number of students through multilevel inheritance.

C++ Program for multilevel inheritance

#include <iostream.h>

class student {

protected :

int roll_number;

public :

void get_number(int);

void put_number(void);

};

void student :: get_number(int a) {

roll_number = a;

}

void student :: put_number() {

cout << “Roll Number: ” << roll_number << “\n”;

}

class test : public student {

//first level derivation

protected :

float sub1;

float sub2;

public :

void get_marks(float, float);

void put_marks(void);

};

void test :: get_marks(float x, float y) {

sub1 = x;

sub2 = y;

}

void test :: put_marks() {

cout << “Marks in SUB1 = ” << sub1 << “\n”;

cout << “Marks in SUB2 = ” << sub2 << “\n”;

}

class result :: public test {

//Second level derivation

float total;

public :

void display(void);

};

void result :: display(void) {

total = sub1 + sub2;

put_number();

put_marks();

cout << “Total = ” << total << “\n”;

}

int main() {

result student1;

//student1 created

student1.get_number(111);

student1.get_marks(75.0, 59.5);

student1.display();

return 0;

}

Output

Roll Number: 111

Marks in SUB1 = 75

Marks in SUB2 = 59.5

Total = 134.5

Multiple inheritance

allows combining the features of several existing classes as a starting point for defining new classes.

Syntax of a derived class with multiple base classes

class D: visibility B-1, visibility B-2 … {

…
(Body of D)

};

visibility may be either public or private.

The base classes are separated by commas.

C++ Program for multiple inheritance

#include <iostream.h>

class M {

protected :

int m;

public :

void get_m(int);

};

class N {

protected :

int n;

public :

void get_n(int);

};

class P : public M, public N {

public :

void display(void);

};

void M :: get_m(int x) {

m = x;

}

void N :: get_n(int y) {

n = y;

}

void P :: display(void) {

cout << “m = ” << “\n”;

cout << “n = ” << “\n”;

cout << “m X n = ” << m * n << “\n”;

}

int main() {

P p;

p.get_m(10);

p.get_n(20);

p.display();

return 0;

}

Output

m = 10

n = 20

m X n = 200

PAGE
15
oop

