Unit – V: I/O, General classes in C++

Unit – V

C++ I/O

Standard I/O using C functions

Stream I/O in C++

Manipulators

Formatted I/O

Overloading << and >> operators

File I/O

General classes in C++

Necessity of Templates

Generic classes using Macros

Class templates

Function templates

Advantages of templates

Exception handling in C++

Benefits of exception handling

Troubles with standard C functions (setjmp and longjmp)

Proposed exception handling mechanism for C++

Stream

Sequence of bytes.

· acts a source (obtains input data)

· acts as a destination (sends output data)

Input Stream

Source Stream that provides data to the program.

Output Stream

Destination Stream that receives output from the program.

Program extracts the bytes from an input stream and inserts bytes into an output stream.

 Input stream

Input device

 extraction

 from input

 stream

program

Output stream

 insertion

Output device

 into output

 stream

Data in the input stream comes from the keyboard or any other storage device.

Data in the output stream goes to the screen or any other storage device.

Stream acts as an interface between the program and the input/output device.

Stream Classes for console I/O operations

Declared in the header file iostream.

ios

pointer

 istream

 streambuf

 ostream

 input

output

iostream

 istream_withassign
 iostream_withassign
ostream_withassign

Class ios

Virtual base class (General I/O stream class)

Contains basic facilities that are used by all other input and output classes.

Also contains a pointer to a buffer object (streambuf).

Declares constants and functions that are necessary for handling formatted input and output operations.

Class istream
(input stream)

Inherits the properties of ios.

Declares input functions such as get(), getline() and read().

Contains overloaded extraction operator >>.

Class ostream (output stream)

Inherits the properties of ios.

Declares output functions put() and write().

Contains overloaded insertion operator <<.

Class iostream (input/output stream)

Inherits the properties of ios, istream and ostream through multiple inheritance and thus contains all the input and output functions.

Class streambuf

Provides an interface to physical devices through buffers.

Acts as a base for filebuf class used ios files.

Unformatted I/O operations

Overloaded operators >> and <<

>> operator
overloaded in the istream class.

<< operator
overloaded in the ostream class.

General format for reading data from the keyboard

cin << variable1 >> variable2 >> … >> variableN

General format for displaying data on the screen

cout >> item1 >> item2 >> … >> itemN

put() and get() Functions

handles the single character input/output operations.

get(char *)

assigns the input character to its argument.

get(void)

returns the input character.

put()

used to output a line of text, character by character.

C++ program using get() and put()

#include <iostream.h>

int main() {

int count = 0;

char c;

cout << “Input Text\n”;

cin.get(c);

//equivalent to c = cin.get();

while (c != ‘\n’) {

cout.put(c);

count++;

c = cin.get();

}

cout << “\n Number of characters = ” << count << “\n”;

return 0;

}

Input

Object Oriented Programming

Output

Object Oriented Programming

Number of characters = 27

getline()Function

reads a whole line of text that ends with a newline character.

cin.getline(line, size);

reads character input into the variable line.

The reading is terminated as soon as either the newline character ‘\n’ is encountered or size – 1 characters are read (whichever occurs first).

Example

char name[20];

cin.getline(name, 20);

cin can read strings that do not contain white spaces.

write() Function

Displays an entire line.

cout.write(line, size);

line

name of the string to be displayed.

size

number of characters to display.

Formatted I/O operations

a. ios class functions and flags

Defining Field Width: width()
Specifies the required field size for displaying an output value for only one item.

cout.width(w);

w
field width (number of columns)

field width should be specified for each item separately.

C++ never truncates the values, if the specified field width is smaller than the size of the value to be printed and expands the field to fit the value.

Example

cout.width(3); cout << 12345;
prints

12345

Setting Precision: precision()
By default, the floating numbers are printed with six digits after the decimal point.

cout.precision(d);

d
number of digits to the right of the decimal point.

Retains the setting in effect until it is reset.

Example

cout.precision(3);

output
cout << 3.14159 << “\n”;

3.142

cout << 2.50032 << “\n”;

2.5

cout.precision(4);

cout << 2.50032 << “\n”;

2.5003

Field specification and the precision setting can be combined.

cout.precision(2);

cout.width(5);

cout << 1.2345;

prints
b1.23

prints two digits after the decimal point in a field of five character width.

Filling and Padding: fill()
Fills the unused positions by any desired character.

cout.fill(ch);

ch
character used for filling the unused positions.

Example

cout.fill(‘*’);

cout.width(10);

cout << 5250 << “\n”;

prints
******5250

fill() stays in effect till changed again.

Formatting Flags, Bit-fields: setf()
setf

set flags

cout.setf(arg1, arg2);

arg1
 one of the formatting flags defined in the class ios.

formatting flag

 specifies the format action required for the output.

arg2
 known as bit field.

 specifies the group to which the formatting flag belongs.

Flags and bit fields for setf() function

Format required
Flag(arg1)
Bit-field (arg2)

Left-justified output

Right-justified output

Padding after sign or base Indicator
ios :: left

ios :: right

ios :: internal
ios :: adjustfield

ios :: adjustfield

ios :: adjustfield

Scientific notation

Fixed point notation
ios :: scientific

ios :: fixed
ios :: floatfield

ios :: floatfield

Decimal base

Octal base

Hexadecimal base
ios :: doc

ios :: oct

ios :: hex
ios :: basefield

ios :: basefield

ios :: basefield

Example

cout.fill(‘*’);

cout.setf(ios :: left, ios :: adjustfield);

cout.width(15);

cout << “Table 1” << “\n”;

prints
Table 1********

cout.fill(‘*’);

cout.precision(3);

cout.setf(ios :: internal, ios :: adjustfield);

cout.setf(ios :: scientific, ios :: floatfield);

cout.width(15);

cout << –12.34567 << “\n”;

prints
–*****1.235e+01

unsetf()

clears the flags specified.

Displaying Trailing Zeros and trailing decimal point

cout.setf(ios :: showpoint);

Displaying Plus Sign

cout.setf(ios :: showpos);

Example

cout.setf(ios :: showpoint);

cout.setf(ios :: showpos);

cout.precision(3);

cout.setf(ios :: fixed, ios :: floatfield);

cout.setf(ios :: internal, ios :: adjustfield);

cout.width(10);

cout << 275.5 << “\n”;

prints

+bb275.500

Managing output with manipulators

iomanip.h
provides a set of manipulator functions.

Most commonly used manipulators

Manipulator
Meaning
Equivalent

setw(int w)

setprecision(int d)
Set the field width to w.

Set the floating-point precision to d.
width()

precision()

setfill(int c)
Set the fill character to c.
fill()

setiosflags(long f)
Set the format flag f.
setf()

resetiosflags(long f)
Clear the flag specified by f.
unsetf()

Endif
Insert new line and flush stream.
“\n”

Examples

cout << setw(10) << 12345;

prints

bbbbb12345

cout << setw(10) << setiosflags(ios :: left) << 12345

prints
12345bbbbb

//left-justified
One statement can be used to format output for two or more values.

cout << setw(5) << setprecision(3) << 1.2345

<< setw(10) << setiosflags(ios :: scientific) << sqrt(3) << endl;

prints
b1.234b1.732e+00

File I/O

Uses file streams as an interface between the programs and the files.

 read data Input stream

 data

 input

 Disk files

program

 Output stream

 data

 output

write data

input stream

extracts/reads data from the file.

output stream
inserts/writes data to the file.

File Stream Classes

Contained in the header file fstream.

 ios

 istream

 streambuf
 ostream

 iostream

 ifstream fstream ofstream filebuf

 fstream base

ifstream, ofstream and fstream classes are derived from fstreambase and from corresponding iostream class.

filebuf

Sets the file buffers to read and write.

Contains close() and open() as members.

fstreambase
Provides operations common to the file streams.

Serves as a base for fstream, ifstream and ofstream class.

ifstream

Provides input operations.

Contains open() with default input mode.

Inherits the functions get(), getline(), read(), seekg(), tellg() functions from istream.

ostream
Provides output operations.

Contains open() with default output mode.

Inherits put(), seekp(), tellp(), and write() functions from ostream.

fstream
Provides support for simultaneous input and output operations.

A file can be opened

· using the constructor function of the class.

· using the member function open() of the class.

Opening files using Constructor

Used only when one file in the stream.

File name is used to initialise the file stream object.

1. Create a file stream object to manage the stream using the appropriate class.
ofstream
used to create the output stream.

ifstream
used to create the input stream.

2. Initialise the file object with the desired filename.
Example

ofstream outfile(“results”);

//opens results file for output

Creates outfile as an ofstream object that manages the output stream.

Opens the results file and attaches it to the output stream outfile.

ifstream infile(“data”);

//opens data file for input

Declares infile as an ifstream object that manages the input stream.

Opens the data file and attaches it to the input stream infile.

Same file can be used for both reading and writing data.

Example

…

ofstream outfile(“salary”);

…

outfile.close();

ifstream infile(“salary”);

…

infile.close();

C++ program using the same file for reading and writing data

//Creating files with constructor function

#include <iostream.h>

#include <fstream.h>

int main() {

ofstream outfile(“ITEM”);
//connect ITEM file to outfile

cout << “Enter item name: ”;

char name[30];

cin >> name;

//get name from keyboard

outfile << name << “\n”;
//write to ITEM file

cout << “Enter item cost: ”;

float cost;

cin >> cost;

//get cost from keyboard

outfile << cost << “\n”;

//write to ITEM file

outfile.close();

//disconnect ITEM file from outfile

ifstream infile(“ITEM”);
//connect ITEM file to infile

infile >> name;

//read name from ITEM file

infile >> cost;

//read cost from ITEM file

cout << “\n” << “Item name: ” << name << “\n”;

cout << “Item cost: ” << cost << “\n”;

infile.close();

//disconnect ITEM file from infile

return 0;

}

Output

Enter item name: Computer

Enter item cost: 30000

Item name: Computer

Item cost: 30000

Opening files using open()

Used to open multiple files that use the same stream object.

file-stream-class stream-object;

stream-object.open(“filename”);

Example

ofstream outfile;

//Create stream for output
outfile.open(“DATA1”);
//Connect stream to DATA1

…

outfile.close();

//Disconnect stream from DATA1
outfile.open(“DATA2”);
//Connect stream to DATA2

…

outfile.close();

//Disconnect stream from DATA2
…

Opens two files in sequence for writing the data.

First file is closed before opening the second one.

A stream can be connected to only one file at a time.

C++ program with multiple files

//Creating files with open() function

#include <iostream.h>

#include <fstream.h>

int main() {

ofstream fout;

//create output stream

fout.open(“country”);

//connect “country” to it

fout << “United States of America \n”;

fout << “United Kingdom \n”;

fout << “India \n”;

fout.close();

//disconnect “country”

fout.open(“capital”);

//connect “capital”

fout << “Washington \n”;

fout << “London \n”;

fout << “New Delhi \n”;

fout.close();

//disconnect capital

//reading the files

const int N = 80;

//line size

char line[N];

ifstream fin;

//create input stream

fin.open(“country”);

//connect “country” to it

cout << “contents of country file \n”;

while(fin) {

//check end-of-file

fin.getline(line, N);

//read a line

cout << line;

//display line

}

fin.close();

//disconnect “country”

fin.open(“capital”);

//connect “capital”

cout << “\n Contents of capital file \n”;

while(fin) {

fin.getline(line, N);

cout << line;

}

fin.close();

return 0;

}

Output

Contents of country file

United States of America

United Kingdom

India

Contents of capital file

Washington

London

New Delhi

General form of the function open() with two arguments

stream-object.open(“filename”, mode);

mode
specifies the purpose for which the file is opened.

File mode parameters

Parameter

Meaning

ios::app

Append to end-of-file

ios::ate

Go to end-of-file on opening

ios::binary

Binary file

ios::in

Open file for reading only

ios::nocreate

Open fails if the file does not exist

ios::noreplace
Open files if the file already exists

ios::out

Open file for writing only

ios::trunc

Delete the contents of the file if it exists

Functions for Manipulation of File pointers

seekg()
Moves get pointer(input) to a specified location.

seekp()
Moves put pointer(output) to a specified location.

tellg()
Gives the current position of the get pointer.

tellp()
Gives the current position of the put pointer.

Example

infile.seekg(10)

moves the file pointer to the byte number 10.

Bytes in a file are numbered beginning from zero.

The pointer will be pointing to the 11th byte in the file.

Specifying the offset

seekg(offset, refposition);

seekp(offset, refposition);

offset

number of bytes the file pointer is to be moved from the location specified by the parameter refposition.

refposition

ios::beg

start of the file

ios::cur

current position of the pointer

ios::end

End of the file

Pointer offset calls

Seek call

Action

fout.seekg(0, ios::beg);
Go to start

fout.seekg(0, ios::cur);
Stay at the current position

fout.seekg(0, ios::end);
Go to the end of file

fout.seekg(m, ios::beg);
Move to (m+1)th byte in the file

fout.seekg(m, ios::cur);
Go forward by m byte from the current position

fout.seekg(-m, ios::cur);
Go backward by m bytes from the current position

fout.seekg(-m, ios::end);
Go backward by m bytes from the end

Templates/Parameterised classes or Functions

Feature added recently.

Used to create a family of classes or functions.

Enables to define generic classes and functions, which provides support for Generic programming.

Kind of a macro.

When an object of a specific type is defined for actual use, the template definition for that class is substituted with the required data type.

Generic programming

Generic types are used as parameters in algorithms.

Class Templates

Creates a generic class using a template with an anonymous type.

General format

template <class T>

class classname {

//…

//class member specification with appropriate type T

//wherever appropriate

//…

};

Template class

Class created from a class template.

Format for defining an object of a template class

classname <type> objectname(arglist);

C++ program with class template

#include<iostream.h>

const size = 3;

template <class T>

class vector {

T* v;

//type T vector

public :

vector() {

v = new T[size];

for (int i = 0; i < size; i++)

v[i] = 0;

}

vector (T* a) {

for (int i = 0; i < size; i++)

v[i] = a[i];

}

T operator*(vector &y) {

T sum = 0;

for (int i = 0; i < size; i++)

sum += this (v[i] * y.v[i];

return sum;

}

};

int main() {

int x[3] = {1, 2, 3};

int y[3] = {4, 5, 6};

vector <int> v1(x);

vector <int> v2(y);

int R = v1 * v2;

cout << “R = ” << R << “\n”;

return 0;

}

Output

R = 32

Function Templates

Used to create a family of functions with different argument types.

General format

template <class T>

returntype functioname(arguments of type T) {

//…

//Body of function with type T wherever appropriate

//…

}

C++ program with function template

#include <iostream.h>

template <class T>

void swap(T &x, T &y) {

T temp = x;

x = y;

y = temp;

}

void fun(int m, int n, float a, float b) {

cout << “m and n before swap: ” << m << “ ” << n << “\n”;

swap(m, n);

cout << “m and n after swap: ” << m << “ ” << n << “\n”;

cout << “a and b before swap: ” << a << “ ” << b << “\n”;

swap(a, b);

cout << “a and b before swap: ” << a << “ ” << b << “\n”;

}

int main() {

fun(100, 200, 11.22, 33.44);

return 0;

}

Output

m and n before swap: 100 200

m and n after swap: 200 100

a and b before swap: 11.22 33.44

a and b after swap: 33.44 11.22

Template Function

Function created from a function template.

Advantages of Templates

· implements the concept of generic programming.

· allows to generate a family of classes or a family of functions to handle different data types.

· eliminates code duplication for different types and makes the program development easier and more manageable.

· template functions can be overloaded.

Exception handling

Exceptions

Runtime anomalies or unusual conditions that a program may encounter while executing.

Anomalies

Conditions such as

division by zero,

access to an array outside of its bounds,

or
running out of memory or disk space.

Exception handling

New feature added.

Provides a type-safe, integrated approach, for coping with the unusual predictable problems that arise while executing a program.

Types of exceptions

Synchronous exceptions

Asynchronous exceptions

Synchronous exceptions

Errors such as

out-of-range index

overflow

Asynchronous exceptions

Errors caused by events beyond the control of the program (such as keyboard interrupts).

C++ handles only synchronous exceptions.

Exception handling mechanism

Provides means to detect and report an ‘exceptional circumstance’ so that appropriate action can be taken.

Tasks performed

1. Find the problem (Hit the exception).

2. Inform that an error has occurred (Throw the exception).

3. Receive the error information (Catch the exception).

4. Take corrective actions (Handle the exception).

Built upon three keywords – try, throw, and catch.

try
used to preface a block of statements (try block) that generate exceptions.

throw
When an exception is detected, it is thrown using a throw statement in the try block.

catch
catches the exception thrown by the throw statement in the try block and handles it appropriately.

try block

Detects and throws

 an exception

Exception

object

catch block

Catches and handles

 the exception

The catch block that catches an exception must immediately follow the try block that throws the exception.

General format

…

try {

…

throw exception;
//Block of statements which detects

…

//and throws an exception
}

catch (type arg) {

//Catches exception

…

//Block of statements that handles

…

//the exception

}

…

When the try block throws an exception, the program control leaves the try block and enters the catch statement of the catch block.

C++ program with try block throwing an exception

#include <iostream.h>

int main() {

int a, b;

cout << “Enter values of a and b \n”;

cin >> a >> b;

int x = a – b;

try {

if (x != 0) {

cout << “Result (a / x) = ” a / x << “\n”;

}

else {

//There is an exception

throw(x);

//Throws int object

}

}

catch(int i) {

//Catches the exception

cout << “Exception caught: x = ” << x << “\n”;

}

return 0;

}

Output

First Run

Enter values of a and b

10 10

Exception caught: x = 0

Second Run

Enter values of a and b

20 15

Result (a / x) = 4

PAGE
15
oop

